Maximum Number

- **Problem.** Given a set S of numbers, find the largest number in the set.
- **Algorithm A:**
 1. Let M be the first number in S.
 2. For each number s in S:
 - If $s > M$, place the value of s in M. Go back to the beginning of S and start step 2 once again.
 - If we got to the end of S, return M and stop.

$S = 1, 5, -3, 3.14, 100.1, 432, 123, 123.4$
Maximum Number

• **Problem.** Given a set S of numbers, find the largest number in the set.

• **Algorithm B:**
 1. Let M be the first number in S.
 2. Go over each number s in S:
 • If $s > M$, place the value of s in M.
 • Once we got to the end of S, return M and stop.

$$S = 1, 5, -3, 3.14, 100.1, 432, 123, 123.4$$

Which Algorithm is More Efficient?

• **Algorithm A:**
 1. Let M be the first number in S.
 2. Go over each number s in S:
 • If $s > M$, place the value of s in M. Go back to the beginning of S and start step 2 once again.
 • If we got to the end of S, return M and stop.

• **Algorithm B:**
 1. Let M be the first number in S.
 2. Go over each number s in S:
 • If $s > M$, place the value of s in M.
 • Once we got to the end of S, return M and stop.
Running Time

• Analyzing the **running time of an algorithm**:
 ◦ Each basic operation takes **1 unit of time**: addition, placing a value in a variable, checking the next number of the list, etc.
 ◦ **Obviously false!** We will see why this is reasonable to do.
 ◦ Running time is with respect to the **size of the input**: How long it takes to find max of \(n \) numbers.

Running Time: Example 1

• What happens for **input** \(n, n-1, n-2, \ldots, 1 \)?

 • **Algorithm A.**
 ◦ Put first element in \(M \): **1** time unit.
 ◦ Go over every element of the list: **\(n \)** units.
 ◦ Compare each element to \(M \): **\(n \)** units.
 ◦ Return \(M \): **1** unit.
 ◦ **Total: ** \(2n + 2 \) time units.

 • **Algorithm B.**
 ◦ Exactly the same. **Total: ** \(2n + 2 \) time units.
Running Time: Example 2

- What happens for input $1, 2, 3, \ldots, n$?
- **Algorithm A.**
 - Put first element in M: 1 time unit.
 - Compare M to first element, compare M to second element, place second element in M: 3 time units.

Running Time: Example 2

- What happens for input $1, 2, 3, \ldots, n$?
- **Algorithm A.**
 - Put first element in M: 1 time unit.
 - Go until element 2 and set $M = 2$: 3 units.
 - Go until element 3 and set $M = 3$: 4 units.
 - ...
 - Go until element n and set $M = n$: $n + 1$ units.
 - Return M: 1 unit.
 - **Total:** $1 + 1 + 3 + 4 + 5 + \cdots + (n + 1) = \frac{n^2 + 3n}{2}$ time units.
Running Time: Example 2

- What happens for input \{1,2,3, \ldots, n\}?
- **Algorithm A.**
 - Total: \(1 + 1 + 3 + 4 + 5 + \cdots + (n + 1) = \frac{n^2+3n}{2} \) time units.
- **Algorithm B.**
 - Similar to Example 1, which took \(2n + 2 \). But with \(n - 1 \) new assignments to \(M \).
 - Total: \(3n + 1 \) time units.
- In one example both algorithms behaved the same, but not in the other!

Worst Case Analysis

- Analyzing the running time of an algorithm:
 - Consider the maximum number of steps that the algorithm requires for an input of size \(n \).
 - **Worst case analysis.**
- In our example, the worst case running times are
 - Algorithm A: \(\frac{n^2+3n}{2} \).
 - Algorithm B: \(3n + 1 \).
Rate of Growth

- We have two algorithms for the same problem.
 - Alg C has worst case running time of n^8.
 - Alg D has worst case running time of $10^{10}n^2$.

- **Which algorithm is better?**
 - Alg D is better when $n \geq 47$.

- We care about **large** n.

Checking Some Values of $|V|$:

<table>
<thead>
<tr>
<th>n</th>
<th>$10^{10} \cdot n^2$</th>
<th>n^8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10^{10}</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>$2.5 \cdot 10^{11}$</td>
<td>390,625</td>
</tr>
<tr>
<td>10</td>
<td>10^{12}</td>
<td>10^8</td>
</tr>
<tr>
<td>50</td>
<td>$2.5 \cdot 10^{13}$</td>
<td>$\sim 3.9 \cdot 10^{13}$</td>
</tr>
<tr>
<td>100</td>
<td>10^{14}</td>
<td>10^{16}</td>
</tr>
<tr>
<td>10,000,000</td>
<td>10^{24}</td>
<td>10^{56}</td>
</tr>
</tbody>
</table>
What Can a Computer Do?

\[(2 \cdot 10^{20}) \cdot (3 \cdot 10^8) \cdot (14 \cdot 10^9) < 10^{38}.\]

Seconds per year Age of universe

- Even if we had MUCH MUCH MUCH ... MUCH faster computers, we won’t be able to run programs with \(10^{56}\) steps.

- \(10^{10} n^2\) is so much better than \(n^8\)!

Top 10 positions of the 64th TOP500 in November 2019

<table>
<thead>
<tr>
<th>Rank</th>
<th>Rank (original)</th>
<th>Name</th>
<th>Model</th>
<th>Processor</th>
<th>Interconnect</th>
<th>Vendor</th>
<th>Site country, year</th>
<th>Operating system</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>148.600</td>
<td>Summit</td>
<td>IBM Power System AC922</td>
<td>POWER8, Tesla V100</td>
<td>InfiniBand EDR</td>
<td>IBM</td>
<td>Oak Ridge National Laboratory United States, 2018</td>
<td>Linux (RHSE)</td>
</tr>
<tr>
<td>2</td>
<td>94.944</td>
<td>Sierra</td>
<td>IBM Power System 9023LC</td>
<td>POWER8, Tesla V100</td>
<td>InfiniBand EDR</td>
<td>IBM</td>
<td>Lawrence Livermore National Laboratory United States, 2018</td>
<td>Linux (RHSE)</td>
</tr>
</tbody>
</table>
Asymptotic Running Time

- We care about the running time of programs that receive **large inputs**.
 - When analyzing running times, we first care about the **dependency in n**.
 - We will not care whether an algorithm requires $10n^2$ steps or $100n^2$ steps.
 - What about $n^2 + 1000n + 10^{10}$?
 - When n is sufficiently large
 - $1000n + 10^{10} < n^2$.
 - So $n^2 + 1000n + 10^{10} < 2n^2$.

$O(\cdot)$-Notation

- Asymptotic notation:
 - Functions $f(n)$ and $g(n)$ represent running times.
 - $f(n) = O(g(n))$ means that exist $c, d > 0$ such that $f(n) \leq c \cdot g(n)$ for every $n \geq d$.
 - **Intuitively**, $f(n)$ does not grow faster than $g(n)$ when n is large.
 - **Example**: $n^2 + 5 = O(n^3)$ because $n^2 + 5 \leq n^3$ for every $n \geq 3$.
 - In this case $c = 1$ and $d = 3$.
The Heart of the Matter

\[n^2 + 5 = O(n^3) \]

means that \(n^2 + 5 \) does not grow faster than \(n^3 \).

(when \(n \) is large and up to constant factors.)

\[O(\cdot) - \text{Notation} \]

- Asymptotic notation:
 - Functions \(f(n) \) and \(g(n) \) represent running times.
 - \(f(n) = O(g(n)) \) means that exist \(c, d > 0 \) such that \(f(n) \leq c \cdot g(n) \) for every \(n \geq d \).
 - Intuitively, \(f(n) \) does not grow faster than \(g(n) \) when \(n \) is large.
 - Example 2: It is not true that \(n^2 = O(n) \). For any \(c \) we have \(n^2 > cn \) for sufficiently large \(n \).
 - \(n^2 \) grows faster than \(n \).
\(O(\cdot) \)-Notation Exercises

- True or False?
 - \(n^3 + n^4 = O(n^4) \).

- \(n^3 + n^4 \leq n^4 + n^4 = 2n^4 \)
- True: \(n^3 + n^4 \) does not grow faster than \(n^4 \).
- Formally. Setting \(c = 2 \) and \(d = 1 \), we get that \(n^3 + n^4 \leq cn^4 \) for every \(n \geq d \).
Discuss in Groups

• Which of the following are true, and why:
 ◦ $1000 = O(n)$.
 ◦ $100n^2 = O(n^2)$.
 ◦ $n + n^2 + n^3 + n^4 = O(n^4)$.
 ◦ $n^2 \cdot n^3 = O(n^4)$.
 ◦ $n^5 - 2n^4 = O(n^4)$.

For true statements, find valid values for c and d.

Back to Finding a Maximum

• Our algs for finding a maximum:
 ◦ Algorithm A: $\frac{n^2 + 3n}{2}$.
 ◦ Algorithm B: $3n + 1$.

• How would we write these running times using $O(\cdot)$-notation?
 ◦ Algorithm A: $O(n^2)$.
 ◦ Algorithm B: $O(n)$.
Python Example

• What is the asymptotic running time?

```python
2
n = int(input("Please enter an integer: "))
3
answer = 1
4
for i in range(2,n+1):
5
    answer = answer * i
6
print(answer)
```

◦ Several operations occur only once.
◦ The loop has \(n - 1 \) iterations.
◦ Answer: \(O(n) \).

Python Example 2

• What is the asymptotic running time?

```python
2
def isPrime(num):
3    for i in range(2,num):
4        if num % i == 0:
5            return False
6        return True
7
8
9
n = int(input("Please enter an integer: "))
10
for j in range(2,n+1):
11    if isPrime(j):
12        print(j)
```

◦ Running \(\text{isPrime}(n) \) has running time \(O(n) \).
◦ Since \(\text{isPrime}() \) is called \(n - 1 \) times, the total running time is \(O(n^2) \).
More Details

• What is the **asymptotic running time**?

```python
2 def isPrime(num):
3     for i in range(2,num):
4         if num % i == 0:
5             return False
6     return True
7
8 n = int(input("Please enter an integer: "))
9 for j in range(2,n+1):
10    if isPrime(j):
11        print(j)
```

Why does running an $O(n)$ function n times gives $O(n^2)$?

\[n + n + \cdots + n = n \cdot n = n^2 \]

n times

Recap: Running Time Analysis

• **Analyzing the running time of a program:**
 ◦ With respect to input of size n.
 ◦ **Worst case running time** over all inputs of size n.
 ◦ Assume that n is very large.
 ◦ Asymptotic running time: $O(\cdot)$-notation.
Test Your Intuition

- **Problem.** Given a set S of n numbers, find the largest number in S.
 - We saw an algorithm that solves the problem with running time $O(n)$.
 - Explain why an asymptotically faster algorithm cannot exist for this problem. (for example, why can’t we have an algorithm with running time $O(n^{1/2})$).

A Search Problem

- **We have a list/array and wish to find a specific element in it.**
 - **Example.** A list of people in the US, each element contains the details of the relevant person.
 - Given an SSN, we wish to return the information of the relevant person.
 - Accessing one entry takes constant time.
Basic Search

- **Basic search algorithm:**
 - Receive SSN \(X \) as input.
 - For each element \(Y \) in list:
 - If \(X \) is the SSN of \(Y \), return information of element \(Y \) and stop program.
 - Print that there is no person with this SSN.

- **Running time:**
 - List consists of \(n \) elements.
 - Number of operations is \(O(n) \).

Binary Search

- Assume that the list is sorted according to the SSNs.
 - Can we use this to search faster?
 - List \(L \) of length \(n \).

- **Compare** input SSN \(X \) to SSN in \(L[n/2] \):
 - If the numbers are identical – done!
 - If \(X \) is smaller, look only in first half of \(L \).
 - If \(X \) is larger, look only in second half of \(L \).
 - Repeat the above. At every step we cut the length of the list by half!
Binary Search: Example

We are looking for 14 in list:

<table>
<thead>
<tr>
<th>Cell #</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>-2</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>14</td>
<td>15</td>
<td>17</td>
<td>22</td>
</tr>
</tbody>
</table>

We first compare 14 with the element in the middle cell (cell 7). Since 8 < 14:

<table>
<thead>
<tr>
<th>Cell #</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>-2</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>14</td>
<td>15</td>
<td>17</td>
<td>22</td>
</tr>
</tbody>
</table>

We next consider the middle element of the green part. There are two: cells 10 and 11.

We are looking for 14 in list:

<table>
<thead>
<tr>
<th>Cell #</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>-2</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>14</td>
<td>15</td>
<td>17</td>
<td>22</td>
</tr>
</tbody>
</table>

Bad luck: Say we chose cell 11. Since 15 > 14

<table>
<thead>
<tr>
<th>Cell #</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>-2</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>14</td>
<td>15</td>
<td>17</td>
<td>22</td>
</tr>
</tbody>
</table>

Cell 9: Since 11 < 14
Mario Explains Binary Search

Run Binary Search on Your Own

Run the algorithm to find 55 in list. What cells did you check?

<table>
<thead>
<tr>
<th>Cell</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Val</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>14</td>
<td>16</td>
<td>17</td>
<td>25</td>
<td>29</td>
<td>40</td>
<td>50</td>
<td>55</td>
<td>59</td>
<td>99</td>
</tr>
</tbody>
</table>
Binary Search: Number of Steps

- **List** \(L \) has \(n \) elements.
- At each step we cut the length in half.
 - Sometimes we move from \(n \) to \(\lfloor n/2 \rfloor \).
- **How many steps are there?**
 - **Worst case**: Number of times we need to divide \(n \) by 2 until we get 1.
 - This is \(\log_2 n \).
- There are \(\leq \log_2 n \) steps, each requiring constant time.
 - Running time: \(O(\log_2 n) \).

\(\log n \) is so Much Better than \(n \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\log_2 n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>~3.3</td>
</tr>
<tr>
<td>100</td>
<td>~6.6</td>
</tr>
<tr>
<td>1,000,000</td>
<td>~20</td>
</tr>
<tr>
<td>1,000,000,000</td>
<td>~30</td>
</tr>
<tr>
<td>(10^{20})</td>
<td>~66.4</td>
</tr>
<tr>
<td>(10^{100})</td>
<td>~332</td>
</tr>
</tbody>
</table>
Discuss in Groups

- **True** or **False**:
 - $10^6 \cdot n \cdot \log_2 n = O(n^2)$
 - $(\log_2 n)^5 = O((\log_2 n)^3)$
 - $2^{\log_2 n} = O(n^2)$
 - $n^5 = O(2^{\log_2 n})$
 - $n^5 = O(n^{\log_2 n})$
 - $\log_2 n = O(\log_9 n)$

- **Recall**:
 - $a^{\log_a b} = b$.
 - $b = 2^{\log_2 b}$.

Asymptotic Behavior of Logarithms

- **True** or **False**:
 - $\log_2 n = O(\log_9 n)$.
- For any $a, b > 1$:
 - $\log_b n = \frac{\log_a n}{\log_a b} = O(\log_a n)$.
A Moment of Nonsense

- Binary search in Flamenco dance: https://www.youtube.com/watch?v=iP897ZS5Nerk

The End