You can find a max flow in a flow network using the Edmonds-Karp algorithm in time $O(|V||E|^2)$.

Problem 1.
Find a max flow and a min cut in the following network. You must find the cut using your max flow, as we did in the proof of the max-flow min-cut theorem.

Problem 2.
We are given a flow network (V, E, s, t, c) and a maximum flow f for this network. The flow f is given by specifying how much flow passes through each edge of E. Then, the capacity of one specific edge e in E is decreased by one. Describe an $O(|V| + |E|)$ algorithm for finding a maximum flow in the new network.

Problem 3.
Consider a directed $G = (V, E)$ and two sets of vertices V_1 and V_2. Both sets contain only vertices from V, and no vertex appears in both sets. We wish to disconnect every path that starts in a vertex of V_1 and ends in a vertex of V_2. Describe an algorithm that finds a minimum set of edges whose removal disconnects these paths. The running time should be $O(|V||E|^2)$.

Problem 4.
Our company transports products to the U.S. by ships and stores those products in warehouses. We have n warehouses around the coasts, and the i'th warehouse can store up to n_i products. There are m ships coming, and the j'th ship brings m_j products. Each ship has a list of specific warehouses it can reach (for example, a ship coming from Spain can reach the NY warehouse, but not the one in Alaska). A ship can visit any number of warehouses that it can reach.

We wish to find warehouses for all the products, according to the above restrictions. Describe this as a flow network problem.