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Abstract

Starting from a supercompact cardinal κ, we force and construct a model in which κ is
both the least strongly compact and least supercompact cardinal and κ exhibits mixed levels
of indestructibility. Specifically, κ’s strong compactness, but not its supercompactness, is
indestructible under any κ-directed closed forcing which also adds a Cohen subset of κ. On
the other hand, in this model, κ’s supercompactness is indestructible under any κ-directed
closed forcing which doesn’t add a Cohen subset of κ.

1 Introduction and Preliminaries

In [3], the following theorem was proven.

Theorem 1 Let V � “ZFC + κ is supercompact”. There is then a partial ordering P ⊆ V such

that V P � “κ is both supercompact and the least strongly compact cardinal”. For any Q ∈ V P which

is κ-directed closed, V P∗Q̇ � “κ is strongly compact”. Further, there is R ∈ V P which is κ-directed
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closed and nontrivial such that V P∗Ṙ � “κ is not supercompact”. Moreover, for this R, V P∗Ṙ � “κ

has trivial Mitchell rank”.

The partial ordering R of Theorem 1 turns out to be (Add(κ, 1))V
P

(where for any regular

cardinal δ, Add(δ, 1) is the standard partial ordering for adding a single Cohen subset of δ). We

use this to motivate the terminology that for a model V of ZFC, partial ordering Q ∈ V , and

regular cardinal δ of V , Q adds a Cohen subset of δ means that in V
Q
, there is a subset of δ which

is V -generic for ((Add(δ, 1))V .

Theorem 1 may be thought of as being complementary to Laver’s celebrated result of [11],

where it is shown that any supercompact cardinal κ can have its supercompactness forced to be

indestructible under arbitrary κ-directed closed forcing. Theorem 1 and the work of [11], however,

together raise the following

Question: Is it possible to force a supercompact cardinal κ to have its strong compactness, but not

its supercompactness, indestructible under κ-directed closed partial orderings in a certain class C,

and also have its supercompactness indestructible under κ-directed closed partial orderings lying

in the complement of C?

The purpose of this paper is to answer the above question in the affirmative. Specifically, we

will prove the following theorem.

Theorem 2 Let V � “ZFC + κ is supercompact”. There is then a partial ordering P ⊆ V such

that V P � “κ is both supercompact and the least strongly compact cardinal”. For any Q ∈ V P

which is κ-directed closed and adds a Cohen subset of κ, V P∗Q̇ � “κ is strongly compact but not

supercompact”. In fact, V P∗Q̇ � “κ has trivial Mitchell rank”. On the other hand, for any Q ∈ V P

which is κ-directed closed and doesn’t add a Cohen subset of κ, V P∗Q̇ � “κ is supercompact”.

Forcing to obtain a model in which the least strongly compact cardinal is the same as the least

supercompact cardinal was of course first done by Magidor in [12].

Before beginning the proof of our theorem, we briefly mention some preliminary information

and terminology. Essentially, our notation and terminology are standard, and when this is not
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the case, this will be clearly noted. When forcing, q ≥ p will mean that q is stronger than p. If

G is V -generic over P, we will abuse notation slightly and use both V [G] and V P to indicate the

universe obtained by forcing with P. If x ∈ V [G], then ẋ will be a term in V for x. We may, from

time to time, confuse terms with the sets they denote and write x when we actually mean ẋ or x̌,

especially when x is some variant of the generic set G, or x is in the ground model V . The abuse

of notation mentioned above will be compounded by writing x ∈ V P instead of ẋ ∈ V P. Any term

for trivial forcing will always be taken as a term for the partial ordering {∅}. If ϕ is a formula in

the forcing language with respect to P and p ∈ P, then p ‖ ϕ means that p decides ϕ.

If P is an arbitrary partial ordering and κ is a regular cardinal, P is κ-directed closed if for every

cardinal δ < κ and every directed set 〈pα | α < δ〉 of elements of P (where 〈pα | α < δ〉 is directed if

every two elements pρ and pν have a common upper bound of the form pσ) there is an upper bound

p ∈ P. P is κ-strategically closed if in the two person game of length κ + 1 in which the players

construct an increasing sequence 〈pα | α ≤ κ〉, where player I plays odd stages and player II plays

even stages (choosing the trivial condition at stage 0), player II has a strategy which ensures the

game can always be continued. P is <κ-strategically closed if P is δ-strategically closed for every

δ < κ. Note that if P is κ-directed closed, then P is <κ-strategically closed. We adopt Hamkins’

terminology of [8, 7, 6] and say that x ⊆ κ is a fresh subset of κ with respect to P if P is nontrivial

forcing, x ∈ V P, x 6∈ V , yet x ∩ α ∈ V for every α < κ.

From time to time within the course of our discussion, we will refer to partial orderings P as

being Gitik iterations. By this we will mean an Easton support iteration as first given by Gitik in

[5], to which we refer readers for a discussion of the basic properties of and terminology associated

with such an iteration. For the purposes of this paper, at any stage δ at which a nontrivial forcing

is done in a Gitik iteration, we assume the partial ordering Qδ with which we force has the form

Rδ ∗ Ṙ
′

δ, where Rδ is δ-directed closed and Ṙδ is a term for either trivial forcing or Prikry forcing

defined with respect to a normal measure over δ (although other types of partial orderings may be

used in the general case — see [5] for additional details).
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We recall for the benefit of readers the definition given by Hamkins in [9, Section 3] of the

lottery sum of a collection of partial orderings. If A is a collection of partial orderings, then the

lottery sum is the partial ordering ⊕A = {〈P, p〉 | P ∈ A and p ∈ P} ∪ {0}, ordered with 0 below

everything and 〈P, p〉 ≤ 〈P′, p′〉 iff P = P′ and p ≤ p′. Intuitively, if G is V -generic over ⊕A, then

G first selects an element of A (or as Hamkins says in [9], “holds a lottery among the posets in A”)

and then forces with it.1

Key to the proof of Theorem 2 (specifically the fact that κ’s supercompactness is not indestruc-

tible when forcing with any κ-directed closed partial ordering adding a Cohen subset of κ) is the

following result due to Gitik [3, Proposition 1.1].

Proposition 1.1 Suppose κ is a Mahlo cardinal and P = 〈〈Pα, Q̇α〉 | α ≤ κ〉 is an Easton support

iteration of length κ+ 1 satisfying the following properties.

1. P0 = {∅}.

2. For each α < κ, 
Pα
“|Q̇α| < κ”.

3. 
Pκ
“Q̇κ is <κ-strategically closed”.

4. For some α, δ < κ, 
Pα
“Q̇α adds a new subset of δ”.

5. κ is Mahlo in V Pκ+1 = V P.

Then in V P, there are no fresh subsets of κ.

We note that Proposition 1.1 is an analogue of results due to Hamkins (see [8, 7, 6]). Adopting

the terminology of these papers, Hamkins shows that for a suitably large cardinal κ (measurable,

supercompact, etc.) and an iteration P admitting a gap below κ (i.e., for some δ < κ, P can be

written as Q∗ Ṙ, where |Q| < δ, Q is nontrivial, and 
Q “Ṙ is δ-strategically closed”), after forcing

1The terminology “lottery sum” is due to Hamkins, although the concept of the lottery sum of partial orderings
has been around for quite some time and has been referred to at different junctures via the names “disjoint sum of
partial orderings,” “side-by-side forcing,” and “choosing which partial ordering to force with generically.”
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with P, there are no fresh subsets of κ. The iterations we consider will not be gap forcings, yet

they retain this crucial property vital to the proof of Theorem 2.

Finally, we mention that we are assuming familiarity with the large cardinal notions of mea-

surability, strongness, strong compactness, and supercompactness. Interested readers may consult

[10] or [13] for further details. We do note, however, that κ is said to be supercompact up to the

cardinal λ if κ is δ supercompact for every δ < λ. The measurable cardinal κ is said to have trivial

Mitchell rank if there is no elementary embedding j : V → M generated by a normal measure U

over κ such that M � “κ is a measurable cardinal”. We explicitly observe that if κ has trivial

Mitchell rank, then κ is not supercompact (and in fact, if κ has trivial Mitchell rank, then κ is not

even 2κ supercompact).

2 The Proof of Theorem 2

We turn now to the proof of Theorem 2.

Proof: Let V � “ZFC + κ is supercompact”. Without loss of generality, we assume that V � GCH

as well. For any ordinal δ, let δ′ be the least V -strong cardinal above δ.

The partial ordering P = 〈〈Pα, Q̇α〉 | α < κ〉 to be used in the proof of Theorem 2 is a

modification of the one used in the proof of [3, Theorem 1]. Specifically, P is the Gitik iteration of

length κ which has the following properties.

1. P begins by forcing with Add(ω, 1), i.e., P0 = {∅} and 
P0
“Q̇0 = ˙Add(ω, 1)”.

2. The only stages at which P (possibly) does nontrivial forcing are those ordinals δ which are,

in V , Mahlo limits of strong cardinals. At such a stage δ, Pδ+1 = Pδ ∗ L̇δ ∗ Ṡδ, where L̇δ is a

term for the lottery sum of all δ-directed closed partial orderings having rank below δ′.

3. If either V Pδ∗L̇δ � “There is no subset of δ which is V Pδ -generic for (Add(δ, 1))V
Pδ”, or V Pδ∗L̇δ �

“δ is not measurable”, then Ṡδ is a term for trivial forcing.

4. If V Pδ∗L̇δ � “There is a subset of δ which is V Pδ -generic for (Add(δ, 1))V
Pδ ” and V Pδ∗L̇δ � “δ

is measurable”, then Ṡδ is a term for Prikry forcing defined with respect to some normal
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measure over δ.

The intuition behind the above definition of P is as follows. P begins by forcing with Add(ω, 1)

to ensure that Proposition 1.1 is applicable. The fact that no Prikry forcing is done when the

forcing at stage δ doesn’t add a Cohen subset of δ ensures that in V P, κ’s supercompactness

is indestructible under any κ-directed closed partial ordering not adding a Cohen subset of κ.

Since Prikry forcing is performed when a nontrivial forcing at stage δ both adds a Cohen subset

of δ and preserves the measurability of δ, we ensure that κ’s strong compactness, but not its

supercompactness, is indestructible in V P under any κ-directed closed partial ordering adding a

Cohen subset of κ. Because unboundedly many in κ Prikry sequences will have been added by

P, V P � “No cardinal below κ is strongly compact”, i.e., V P � “κ is the least strongly compact

cardinal”.

The following lemmas show that P is as desired.

Lemma 2.1 Suppose Q ∈ V P is a partial ordering which is κ-directed closed and adds a Cohen

subset of κ. Then V P∗Q̇ � “κ is strongly compact”.

Proof: We follow the proof of [3, Lemma 2.2], quoting verbatim when appropriate. Suppose

Q ∈ V P is κ-directed closed and adds a Cohen subset of κ. Let λ > max(2κ, |TC(Q̇)|) be an

arbitrary regular cardinal large enough so that (2[λ]
<κ

)V = ρ = (2[λ]
<κ

)V
P∗Q̇

and ρ is regular in both

V and V P∗Q̇, and let σ = ρ+ = 2ρ. Take j : V → M as an elementary embedding witnessing the σ

supercompactness of κ such that M � “κ is not σ supercompact”. By [1, Lemma 2.1], κ is a Mahlo

limit of strong cardinals in M . Consequently, by the choice of σ, it is possible to opt for Q in the

stage κ lottery held in M in the definition of j(P). Further, M � “No cardinal δ in the half-open

interval (κ, σ] is strong”. This is since otherwise, in M , κ is supercompact up to a strong cardinal,

so by the proof of [1, Lemma 2.4], κ is supercompact in M . Therefore, the next nontrivial forcing

in the definition of j(P) takes place well above σ. Thus, in M , above the appropriate condition,

because forcing with Q adds a Cohen subset of κ, j(P∗Q̇) is forcing equivalent to P∗Q̇∗Ṡκ∗Ṙ∗j(Q̇),

where 
P∗Q̇ “Ṡκ is a term for Prikry forcing”.
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The remainder of the proof of Lemma 2.1 is as in the proof of [2, Lemma 2]. We outline the

argument, and refer readers to the proof of [2, Lemma 2] for any missing details. By the last two

sentences of the preceding paragraph, as in [2, Lemma 2], there is a term τ ∈ M in the language of

forcing with respect to j(P) such that if G∗H is either V -generic or M-generic over P∗ Q̇, 
j(P) “τ

extends every j(q̇) for q̇ ∈ Ḣ”. In other words, τ is a term for a “master condition” for Q̇. Thus,

if 〈Ȧα | α < ρ < σ〉 enumerates in V the canonical P ∗ Q̇ names of subsets of (Pκ(λ))
V [G∗H], we can

define in M a sequence of P ∗ Q̇ ∗ Ṡκ names of elements of Ṙ ∗ j(Q̇), 〈ṗα | α ≤ ρ〉, such that ṗ0 is a

term for 〈0, τ〉 (where 0 represents the trivial condition with respect to R), 
P∗Q̇∗Ṡκ
“ṗα+1 is a term

for an Easton extension of ṗα
2 deciding ‘〈j(β) | β < λ〉 ∈ j(Ȧα)’ ”, and for η ≤ ρ a limit ordinal,


P∗Q̇∗Ṡκ
“ṗη is a term for an Easton extension of each member of the sequence 〈ṗβ | β < η〉”. In

V [G ∗H ], define a set U ⊆ 2[λ]
<κ

by X ∈ U iff X ⊆ Pκ(λ) and for some 〈r, q〉 ∈ G ∗H and q′ ∈ Sκ

of the form 〈∅, B〉, in M , 〈r, q̇, q̇′, ṗρ〉 
j(P∗Q̇) “〈j(β) | β < λ〉 ∈ Ẋ” for a name Ẋ of X . As in [2,

Lemma 2], U is a κ-additive, fine ultrafilter over (Pκ(λ))
V [G∗H], i.e., V [G ∗ H ] � “κ is λ strongly

compact”. Since λ was arbitrary, this completes the proof of Lemma 2.1.

�

Lemma 2.2 Suppose Q ∈ V P is a partial ordering which is κ-directed closed and doesn’t add a

Cohen subset of κ. Then V P∗Q̇ � “κ is supercompact”.

Proof: Let Q ∈ V P be such that Q is κ-directed closed and in V P∗Q̇, there is no subset of κ which

is V P-generic for (Add(κ, 1))V
P

. As in Lemma 2.1, suppose λ > max(2κ, |TC(Q̇)|) is an arbitrary

regular cardinal large enough so that (2[λ]
<κ

)V = ρ = (2[λ]
<κ

)V
P∗Q̇

and ρ is regular in both V and

V P∗Q̇, and let σ = ρ+ = 2ρ. Take j : V → M as an elementary embedding witnessing the σ

supercompactness of κ such that M � “κ is not σ supercompact”. Again as in Lemma 2.1, by [1,

Lemma 2.1], κ is a Mahlo limit of strong cardinals in M . Consequently, by the choice of σ, it is

possible to opt for Q in the stage κ lottery held in M in the definition of j(P). Further, once more

2Roughly speaking, pβ is an Easton extension of pα means that pβ extends pα as in a usual Easton support
iteration, except that no stems of any components of pα which are conditions in Prikry forcing are extended. For a
more precise definition, readers are urged to consult either [5] or [2].
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as in Lemma 2.1, since M � “No cardinal δ ∈ (κ, σ] is strong”, the next nontrivial forcing in the

definition of j(P) takes place well above σ. Thus, in M , above the appropriate condition, because

forcing with Q doesn’t add a Cohen subset of κ, j(P∗Q̇) is forcing equivalent to P∗Q̇∗ Ṡκ∗Ṙ∗j(Q̇),

where 
P∗Q̇ “Ṡκ is a term for trivial forcing”. With a slight abuse of notation, we will henceforth

say that in M , above the appropriate condition, j(P ∗ Q̇) is forcing equivalent to P ∗ Q̇ ∗ Ṙ ∗ j(Q̇).

As in the proof of Lemma 2.1, there is a term τ ∈ M in the language of forcing with respect to

j(P) such that if G ∗H is either V -generic or M-generic over P ∗ Q̇, 
j(P) “τ extends every j(q̇) for

q̇ ∈ Ḣ”. In other words, τ is once again a term for a “master condition” for Q̇. Thus, if as before,

〈Ȧα | α < ρ < σ〉 enumerates in V the canonical P ∗ Q̇ names of subsets of (Pκ(λ))
V [G∗H], we can

define in M a sequence of P ∗ Q̇ names of elements of Ṙ ∗ j(Q̇), 〈ṗα | α ≤ ρ〉, such that ṗ0 is a

term for 〈0, τ〉 (where 0 once more represents the trivial condition with respect to R), 
P∗Q̇ “ṗα+1

is a term for an Easton extension of ṗα deciding ‘〈j(β) | β < λ〉 ∈ j(Ȧα)’ ”, and for η ≤ ρ a limit

ordinal, 
P∗Q̇ “ṗη is a term for an Easton extension of each member of the sequence 〈ṗβ | β < η〉”.

In V [G ∗ H ], define a set U ⊆ 2[λ]
<κ

by X ∈ U iff X ⊆ Pκ(λ) and for some 〈r, q〉 ∈ G ∗ H , in

M , 〈r, q̇, ṗρ〉 
j(P∗Q̇) “〈j(β) | β < λ〉 ∈ Ẋ” for some name Ẋ of X . As in [2, Lemma 2], U is a

κ-additive, fine ultrafilter over (Pκ(λ))
V [G∗H]. We show that U is normal as well.

To do this, suppose 〈r, q〉 ∈ G ∗ H is such that 〈r, q̇〉 
 “ḟ : (Pκ(λ))
V [G∗H] → λ is such that

{s | ḟ(s) ∈ s} ∈ U̇”. By the definition of U just given, we may assume that in M , 〈r, q̇, ṗρ〉 


“〈j(α) | α < λ〉 ∈ {s | j(ḟ(s)) ∈ s}”. Let 〈ϕα | α < λ〉 be such that ϕα is the statement in the

forcing language with respect to j(P ∗ Q̇) given by “j(ḟ)(〈j(β) | β < λ〉) = j(α)”. Since σ > λ and

Mσ ⊆ M , 〈ϕα | α < λ〉 ∈ M . Therefore, by forcing above 〈r, q̇〉 and arguing as in the definition

of ṗρ, we may assume that ṗ′ρ is a term for an Easton extension of pρ such that for every α < λ,

〈r, q̇, ṗ′ρ〉 ‖ ϕα (so in M [G ∗ H ], p′ρ ‖ ϕα, where we assume that ϕα has been rewritten in the

appropriate forcing language). Because 〈r, q̇, ṗρ〉 
 “〈j(α) | α < λ〉 ∈ {s | j(ḟ(s)) ∈ s}”, there

must be some fixed α0 < λ such that p′ρ 
 ϕα0
. In other words, by extending 〈r, q̇〉 if necessary

(and abusing notation by denoting the extended condition by 〈r, q̇〉 as well), we may assume that

〈r, q̇〉 
 “{s | ḟ(s) = α0} = Ȧγ” and 〈r, q̇, ṗ′ρ〉 
 “〈j(β) | β < λ〉 ∈ {s | j(ḟ(s)) = j(α0)}” for
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some fixed α0 < λ and fixed γ < ρ. It must consequently be the case that 〈r, q̇, ṗρ〉 
 “〈j(β) | β <

λ〉 ∈ j(Ȧγ)”. This is since otherwise, by the definition of ṗρ, 〈r, q̇, ṗρ〉 
 “〈j(β) | β < λ〉 6∈ j(Ȧγ)”.

However, 〈r, q̇, ṗ′ρ〉 ≥ 〈r, q̇, ṗρ〉 and 〈r, q̇, ṗ′ρ〉 
 “〈j(β) | β < λ〉 ∈ j(Ȧγ)”. Thus, 〈r, q̇, ṗρ〉 
 “{s |

ḟ(s) = α0} ∈ U̇”. This completes the proof of Lemma 2.2.

�

Lemma 2.3 V P � “No cardinal δ < κ is strongly compact”.

Proof: We follow the proof of [3, Lemma 2.3], again quoting verbatim when appropriate. Let

λ = κ+ω. Take j : V → M as an elementary embedding witnessing the λ supercompactness of

κ. Suppose Q ∈ V P is Add(κ, 1). By Lemma 2.1, V P∗Q̇ � “κ is measurable” (since V P∗Q̇ � “κ is

strongly compact”). Because λ has been chosen large enough, it therefore follows that MP∗Q̇ � “κ

is measurable”. In addition, as in Lemma 2.1, it is possible to opt for Q in the stage κ lottery held

in M in the definition of j(P). Therefore, by the definition of P, since Q = Add(κ, 1) and so of

course adds a Cohen subset of κ, above the appropriate condition, (j(P ∗ Q̇))κ+1 = Pκ ∗ Q̇κ = Pκ+1

is forcing equivalent in M to P ∗ Q̇ ∗ Ṡκ, where 
P∗Q̇ “Ṡκ is Prikry forcing defined over κ”. This

means that in M , 
Pκ
“By forcing above a condition ṗ∗κ ensuring that ˙Add(κ, 1) is chosen in the

stage κ lottery held in the definition of j(P), Q̇κ is forcing equivalent to a partial ordering adding a

Prikry sequence to κ”. Consequently, by reflection, for unboundedly many δ < κ, 
Pδ
“By forcing

above a condition ṗ∗δ ensuring that ˙Add(δ, 1) is chosen in the stage δ lottery held in the definition

of P, Q̇δ is forcing equivalent to a partial ordering adding a Prikry sequence to δ”.

It now follows that 
P “Unboundedly many δ < κ contain Prikry sequences”. To see this, let

γ < κ be fixed but arbitrary. Choose p = 〈ṗα | α < κ〉 ∈ P. Since P is an Easton support iteration,

let ρ > γ be such that for every α ≥ ρ, 
Pα
“ṗα is a term for the trivial condition”. We may now

find δ > ρ > γ such that 
Pδ
“By forcing above a condition ṗ∗δ ensuring that ˙Add(δ, 1) is chosen

in the stage δ lottery held in the definition of P, Q̇δ is forcing equivalent to a partial ordering

adding a Prikry sequence to δ”. This means that we may find q ≥ p such that q 
 “δ contains

a Prikry sequence”. Thus, 
P “Unboundedly many δ < κ contain Prikry sequences”. Hence,
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by [4, Theorem 11.1], V P � “Unboundedly many δ < κ (i.e., the successors of those cardinals

having Prikry sequences) contain non-reflecting stationary sets of ordinals of cofinality ω”. By [13,

Theorem 4.8] and the succeeding remarks, it thus follows that V P � “No cardinal δ < κ is strongly

compact”. This completes the proof of Lemma 2.3.

�

Lemma 2.4 Suppose Q ∈ V P is κ-directed closed and adds a Cohen subset of κ. Then V P∗Q̇ � “κ

is not supercompact”. In fact, in V P∗Q̇, κ has trivial Mitchell rank.

Proof: We slightly modify the proof of [3, Lemma 2.4], still quoting verbatim when appropriate.

Let G ∗H be V -generic over P ∗ Q̇. Let H ′ ⊆ κ, H ′ ∈ V [G ∗H ] be such that H ′ is V [G]-generic

over (Add(κ, 1))V [G]. If V [G∗H ] � “κ does not have trivial Mitchell rank”, then let j : V [G∗H ] →

M [j(G ∗ H)] be an elementary embedding generated by a normal measure U ∈ V [G ∗ H ] over κ

such that M [j(G ∗H)] � “κ is measurable”. Note that since M =
⋃

α∈Ord j(Vα), j ↾ V : V → M

is elementary. Therefore, because j ↾ κ = id, we may infer that (Vκ)
V = (Vκ)

M . However, by

Proposition 1.1, we may further infer that (Vκ+1)
M ⊆ (Vκ+1)

V . To see this, let x ⊆ κ, x ∈ M .

Since M ⊆ M [j(G ∗H)] ⊆ V [G ∗H ], x ∈ V [G ∗H ]. In addition, because (Vκ)
V = (Vκ)

M , we know

that x∩α ∈ V for every α < κ. This means that if x 6∈ V , then x is a fresh subset of κ with respect

to P ∗ Q̇. Since by Lemma 2.1, κ is strongly compact and hence both measurable and Mahlo in

V [G ∗H ], this contradicts Proposition 1.1. Thus, x ∈ V , so (℘(κ))M ⊆ (℘(κ))V . From this, it of

course immediately follows that (Vκ+1)
M ⊆ (Vκ+1)

V .

Let I = j(G ∗ H). Note that if V � “δ < κ is a strong cardinal”, then M � “j(δ) = δ is a

strong cardinal”. Also, M � “κ is a Mahlo limit of strong cardinals”, since M [j(G ∗ H)] � “κ

is a Mahlo cardinal”, and forcing can’t create a new Mahlo cardinal. Hence, by the results of

the preceding paragraph, it follows as well that j(P) ↾ κ = Pκ = P and Iκ = G. Further, as

V [G ∗ H ] � “M [I]κ ⊆ M [I]”, H ′ ∈ M [I]. We know in addition that in M , 
Pκ∗Q̇κ
“The forcing

beyond stage κ adds no new subsets of 2κ” and κ is a stage at which nontrivial forcing in j(P) can

take place. Consequently, H ′ ∈ M [Iκ+1] = M [G][I(κ)], and M [Iκ+1] � “κ is measurable”.
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Note that since P is defined by taking Easton supports, P is κ-c.c. in both V and M . Because

P is a Gitik iteration of suitably directed closed partial orderings together with Prikry forcing

and (Vκ)
V = (Vκ)

M , (Vκ)
V [G] = (Vκ)

M [G]. It must therefore be the case that (Add(κ, 1))V [G] =

(Add(κ, 1))M [G]. In addition, since (Vκ+1)
M ⊆ (Vκ+1)

V , the fact P is κ-c.c. in M yields that

(Vκ+1)
M [G] ⊆ (Vκ+1)

V [G]. This means that H ′ is M [G]-generic over (Add(κ, 1))M [G], since H ′ is

V [G]-generic over (Add(κ, 1))V [G] = (Add(κ, 1))M [G], and a dense open subset of (Add(κ, 1))M [G]

in M [G] is a member of (Vκ+1)
M [G]. Hence, H ′ must be added by the stage κ forcing done in

M [G] = M [Iκ], i.e., the stage κ lottery held in M [Iκ] must opt for some forcing adding a Cohen

subset of κ. By the definition of P and j(P), we must then have that M [Iκ+1] � “κ contains a

Prikry sequence”. This contradiction to the fact that M [Iκ+1] � “κ is measurable” completes the

proof of Lemma 2.4.

�

Lemmas 2.1 – 2.4 complete the proof of Theorem 2.

�

We conclude this paper with two questions. First, we ask what other classes of κ-directed closed

partial orderings C will provide additional answers to our Question posed in Section 1. Finally, as

in [3], we finish by asking if it is possible to get a model witnessing the conclusions of Theorem 2 in

which κ is not the least strongly compact cardinal. Since Prikry forcing above a strongly compact

cardinal destroys strong compactness, an answer to this question would require a different sort of

iteration from the one used in the proof of Theorem 1.
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Logic 5, 1999, 264–272.

[9] J. D. Hamkins, “The Lottery Preparation”, Annals of Pure and Applied Logic 101, 2000,

103–146.

[10] T. Jech, Set Theory. The Third Millennium Edition, Revised and Expanded, Springer-Verlag,

Berlin and New York, 2003.

[11] R. Laver, “Making the Supercompactness of κ Indestructible under κ-Directed Closed Forc-

ing”, Israel Journal of Mathematics 29, 1978, 385–388.

[12] M. Magidor, “How Large is the First Strongly Compact Cardinal? or A Study on Identity

Crises”, Annals of Mathematical Logic 10, 1976, 33–57.

[13] R. Solovay, W. Reinhardt, A. Kanamori, “Strong Axioms of Infinity and Elementary Embed-

dings”, Annals of Mathematical Logic 13, 1978, 73–116.

12


