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Abstract

We construct two models containing exactly one supercompact cardinal in which all non-
supercompact measurable cardinals are strictly taller than they are either strongly compact or
supercompact. In the first of these models, level by level equivalence between strong compact-
ness and supercompactness holds. In the other, level by level inequivalence between strong
compactness and supercompactness holds. Each universe has only one strongly compact car-
dinal and contains relatively few large cardinals.

1 Introduction and Preliminaries

We begin with definitions due to Hamkins which are found in [9]. For κ a measurable cardinal and

α any ordinal, κ is α tall if there is an elementary embedding j : V → M having critical point

κ such that j(κ) > α and Mκ ⊆ M . κ is tall if κ is α tall for every ordinal α. In [9], Hamkins

∗2000 Mathematics Subject Classifications: 03E35, 03E55.
†Keywords: Supercompact cardinal, strongly compact cardinal, superstrong cardinal, strong cardinal, tall car-

dinal, level by level equivalence between strong compactness and supercompactness, level by level inequivalence
between strong compactness and supercompactness.

‡The author’s research was partially supported by PSC-CUNY grants and CUNY Collaborative Incentive grants.
§The author wishes to thank the referee, for helpful comments and suggestions which have been incorporated

into the current version of the paper.

1



began the study of tall cardinals and showed that they satisfy many interesting and fundamental

properties. In particular, the existence of any number of tall cardinals (one tall cardinal, γ many

tall cardinals for γ an arbitrary ordinal, or even a proper class of tall cardinals) is equiconsistent

with the same number of strong cardinals, thereby showing the nontriviality of tallness. Further,

in analogy to strongness, α tallness is witnessed by an extender embedding (which, without loss of

generality, may be assumed to have rank below the least strong limit cardinal above α), and if δ is

α tall, then δ is β tall for every β < α.

We will extend Hamkins’ study of tallness to the context of level by level equivalence be-

tween strong compactness and supercompactness and level by level inequivalence between strong

compactness and supercompactness. Before doing so, we first present a few additional relevant

definitions. For any ordinal δ, let σδ be the smallest measurable cardinal greater than δ. For any

non-supercompact measurable cardinal δ, let θδ be the smallest cardinal greater than δ such that δ

is not θδ supercompact. For any non-strongly compact measurable cardinal δ, let ρδ be the smallest

cardinal greater than δ such that δ is not ρδ strongly compact. Observe that if δ is not strongly

compact, then both θδ and ρδ are defined, and θδ ≤ ρδ.

Suppose V is a model of ZFC in which for all regular cardinals δ < λ, δ is λ strongly compact

iff δ is λ supercompact. Such a universe will be said to witness level by level equivalence between

strong compactness and supercompactness. Suppose now that V is a model of ZFC in which if

δ is measurable but not supercompact, then δ is θδ strongly compact. V is then said to witness

level by level inequivalence between strong compactness and supercompactness. A non-supercompact

measurable cardinal δ which is θδ strongly compact is said to witness level by level inequivalence

between strong compactness and supercompactness. For brevity, in all of these definitions, we will

henceforth eliminate the phrase “between strong compactness and supercompactness.”

Models containing supercompact cardinals in which level by level equivalence holds were first

constructed in [4]. A model with exactly one supercompact cardinal in which level by level in-

equivalence holds was constructed in [1]. A theorem of Magidor (see [4, Lemma 7]) shows that if

κ is supercompact, then there are always cardinals δ < λ < κ such that λ is singular of cofinality
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greater than or equal to δ, δ is λ strongly compact, but δ is not λ supercompact. As a consequence

of Magidor’s theorem, it follows that if V ² “Level by level equivalence holds and δ is measurable

but not strongly compact”, then either ρδ = θδ or ρδ = (θδ)
+.

The purpose of this paper is to establish two results which show that it is possible to have models

for level by level equivalence and level by level inequivalence containing exactly one supercompact

cardinal and no other strongly compact cardinals in which each non-supercompact measurable

cardinal δ is strictly taller than it is either strongly compact or supercompact. To avoid trivialities,

our witnesses for tallness for δ will be inaccessible cardinals greater than ρδ.
1 Specifically, we prove

the following two theorems.

Theorem 1 Suppose V ² “ZFC + κ is supercompact”. There is then a partial ordering P ⊆ V such

that V P ² “ZFC + GCH + κ is supercompact + No cardinal is supercompact up to a measurable

cardinal”. In V P, level by level equivalence holds, and κ is the only strongly compact cardinal.

Further, in V P, every non-supercompact measurable cardinal δ is λδ tall, for some inaccessible

cardinal λδ > ρδ. In particular, in V P, every non-supercompact measurable cardinal δ is taller than

it is strongly compact.

Theorem 2 Suppose V ² “ZFC + GCH + κ < λ are such that κ is λ supercompact and λ is

the least inaccessible cardinal above κ + Level by level equivalence holds”. There is then a partial

ordering P ∈ V , a submodel V ⊆ V P, and a cardinal κ0 < κ such that V ² “ZFC + GCH +

κ0 is supercompact + No cardinal is supercompact up to an inaccessible cardinal”. In V , level by

level inequivalence holds, and κ0 is the only strongly compact cardinal. Further, in V , every non-

supercompact measurable cardinal δ is λδ tall, for some inaccessible cardinal λδ > ρδ. In particular,

in V , every non-supercompact measurable cardinal δ is taller than it is strongly compact.

1Hamkins has shown in [9, Lemma 2.1] that if δ is λ tall, then δ is (λ)δ tall. He has further shown in [9, Theorem
2.11] that if δ is λ strongly compact, then δ is λ+ tall. Thus, any (fully) strongly compact cardinal must be tall.
However, as the referee has pointed out, it is possible to infer from [9, Theorem 2.11] that if δ is measurable and
ρδ = λ+, then δ is strictly taller than it is strongly compact. This is since δ is (at least) λ+ tall, yet δ is only
λ strongly compact. If, on the other hand, ρδ is a limit cardinal, then the proof given in [9, Theorem 2.11] will
not allow us to conclude that δ is strictly taller than it is strongly compact. This is because Hamkins’ argument
uses that a λ strong compactness embedding actually witnesses λ+ tallness, so when ρδ is a limit cardinal, it is
unclear how to find one strong compactness embedding which gives enough tallness. Whether or not there is a ZFC
proof that every non-strongly compact measurable cardinal is strictly taller than it is strongly compact is an open
question.
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In fact, for both Theorems 1 and 2, the witnessing models will be such that every measurable

cardinal δ is λδ tall, where λδ is the least weakly compact cardinal above ρδ, the least Ramsey

cardinal above ρδ, the least Ramsey limit of Ramsey cardinals above ρδ, or in general, where λδ

is any “reasonable” large cardinal provably below the least measurable cardinal above ρδ. We will

explain this in greater detail towards the end of the paper.

We now very briefly give some preliminary information concerning notation and terminology.

When forcing, q ≥ p means that q is stronger than p. If G is V -generic over P, we will abuse

notation slightly and use both V [G] and V P to indicate the universe obtained by forcing with P.

We will, from time to time, confuse terms with the sets they denote and write x when we actually

mean ẋ or x̌.

The partial ordering P is κ-strategically closed if in the two person game in which the players

construct an increasing sequence 〈pα : α ≤ κ〉, where player I plays odd stages and player II plays

even stages (choosing the trivial condition at stage 0), player II has a strategy which ensures the

game can always be continued. P is ≺κ-strategically closed if in the two person game in which the

players construct an increasing sequence 〈pα : α < κ〉, where player I plays odd stages and player II

plays even stages (choosing the trivial condition at stage 0), player II has a strategy which ensures

the game can always be continued. P is (κ,∞)-distributive if given a sequence 〈Dα : α < κ〉 of

dense open subsets of P,
⋂

α<κ Dα is dense open as well. Note that if P is κ-strategically closed,

then P is (κ,∞)-distributive. Further, if P is (κ,∞)-distributive and f : κ → V is a function in

V P, then f ∈ V .

A corollary of Hamkins’ work on gap forcing found in [7] and [8] will be employed in the proof

of Theorem 2. We therefore state as a separate theorem what is relevant for this paper, along with

some associated terminology, quoting from [7] and [8] when appropriate. Suppose P is a partial

ordering which can be written as Q∗ Ṙ, where |Q| < δ, Q is nontrivial, and °Q “Ṙ is δ-strategically

closed”. In Hamkins’ terminology of [7] and [8], P admits a gap at δ. In Hamkins’ terminology of

[7] and [8], P is mild with respect to a cardinal κ iff every set of ordinals x in V P of size less than

κ has a “nice” name τ in V of size less than κ, i.e., there is a set y in V , |y| < κ, such that any
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ordinal forced by a condition in P to be in τ is an element of y. Also, as in the terminology of [7],

[8], and elsewhere, an embedding j : V → M is amenable to V when j ¹ A ∈ V for any A ∈ V .

The specific corollary of Hamkins’ work from [7] and [8] we will be using is then the following.

Theorem 3 (Hamkins) Suppose that V [G] is a generic extension obtained by forcing that admits

a gap at some regular δ < κ. Suppose further that j : V [G] → M [j(G)] is an embedding with

critical point κ for which M [j(G)] ⊆ V [G] and M [j(G)]δ ⊆ M [j(G)] in V [G]. Then M ⊆ V ;

indeed, M = V ∩ M [j(G)]. If the full embedding j is amenable to V [G], then the restricted

embedding j ¹ V : V → M is amenable to V . If j is definable from parameters (such as a measure

or extender) in V [G], then the restricted embedding j ¹ V is definable from the names of those

parameters in V . Finally, if P is mild with respect to κ and κ is λ strongly compact in V [G] for

any λ ≥ κ, then κ is λ strongly compact in V .

We assume familiarity with the large cardinal notions of measurability, strongness, superstrong-

ness, strong compactness, and supercompactness. Readers are urged to consult [10] for further de-

tails. Note that we will say that κ is supercompact (or strongly compact or tall) up to the cardinal

λ if κ is γ supercompact (or γ strongly compact or γ tall) for every γ < λ.

2 The Proofs of Theorems 1 and 2

We turn now to the proof of Theorem 1.

Proof: Suppose V ² “ZFC + κ is supercompact”. By first forcing GCH, then forcing with the

partial ordering of [4], and then taking the appropriate submodel if necessary, we slightly abuse

notation and assume in addition that V ² “ZFC + GCH + κ is supercompact + No cardinal

is supercompact up to a measurable cardinal + Level by level equivalence holds”. In particular,

V ² “κ is the only strongly compact cardinal”.

We are now in a position to define the partial ordering P used in the proof of Theorem 1.

Let A = {δ < κ : δ is a non-superstrong measurable cardinal}. P is the reverse Easton iteration

of length κ which begins by adding a Cohen subset of ω and then does nontrivial forcing only at
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stages δ ∈ A, where it adds a non-reflecting stationary set of ordinals of cofinality ω to δ.2 Standard

arguments show that V P ² GCH and that V and V P have the same cardinals and cofinalities.

Lemma 2.1 Suppose δ < λ are both regular cardinals and δ < κ. If V ² “δ is λ supercompact and

δ is superstrong”, then V P ² “δ is λ supercompact”.

Proof: Let j : V → M be an elementary embedding witnessing the λ supercompactness of δ

generated by a supercompact ultrafilter over Pδ(λ). Write P = Pδ ∗ Ṗδ. Since V ² “No cardinal is

supercompact up to a measurable cardinal”, λ < σδ. Therefore, by the definition of P, °Pδ
“Ṗδ is

≺(σδ)
V -strategically closed”. In addition, because |Pδ| = δ, by the Lévy-Solovay results [11], it is

the case that °Pδ
“(σδ)

V = (σδ)
V Pδ ”. Thus, to show that V P ² “δ is λ supercompact”, it suffices to

show that V Pδ ² “δ is λ supercompact”. However, by the facts that λ < σδ and Mλ ⊆ M , M ² “No

cardinal in the half-open interval (δ, λ] is measurable”. Further, since by GCH, λ ≥ δ+ = 2δ, as in

[2, Lemma 2.1], M ² “δ is superstrong”. This means that j(Pδ) = Pδ ∗ Q̇, where the first ordinal

at which Q̇ is forced to do nontrivial forcing is well above λ. A standard argument now shows that

j lifts in V Pδ to a λ supercompactness embedding j : V Pδ → M j(Pδ).3 This completes the proof of

Lemma 2.1.

¤

Suppose λ > κ is regular. Let j : V → M be an elementary embedding witnessing the λ

supercompactness of κ generated by a supercompact ultrafilter over Pκ(λ). Since V ² “No cardinal

is supercompact up to a measurable cardinal”, V ² “There are no measurable cardinals above κ”.

Thus, V ² “λ is not measurable”. The proof of Lemma 2.1 consequently shows that j lifts in V P

as before to j : V P → M j(P). It therefore follows as an immediate corollary of the proof of Lemma

2.1 that V P ² “κ is supercompact”.

2The precise definition of this partial ordering may be found in either [4] or [2]. We do wish to note here, however,
that it is ≺δ-strategically closed. Also, whenever δ is inaccessible, this partial ordering has cardinality δ.

3An outline of this argument is as follows. Let G0 be V -generic over Pδ. The same method as found, e.g.,
in the construction of the generic object G1 in the proof of [2, Lemma 2.4] now allows us to build in V [G0] an
M [G0]-generic object G1 over Q. This argument uses that by GCH and the fact that j is given by an ultrapower
embedding, we may let 〈Dα : α < λ+〉 enumerate in V [G0] the dense open subsets of Q present in M [G0]. Because
M [G0] remains λ-closed with respect to V [G0], by the ≺λ+-strategic closure of Q in both M [G0] and V [G0], we
may work in V [G0] and meet each Dα in order to construct G1. Since j′′G0 ⊆ G0 ∗ G1, we may lift j in V [G0] to
j : V [G0] → M [G0][G1].
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Lemma 2.2 V P ² “No cardinal is supercompact up to a measurable cardinal”.

Proof: Suppose δ ≤ λ are such that V P ² “δ is α supercompact for every α < λ and λ is

measurable”. By its definition, we may write P = P′ ∗ Ṗ′′, where |P′| = ω, P′ is nontrivial, and

°P′ “Ṗ′′ is ℵ1-strategically closed”. Therefore, by Theorem 3, it must be the case that V ² “δ is

α supercompact for every α < λ and λ is measurable” as well. Since this is contradictory to our

hypotheses about V , this completes the proof of Lemma 2.2.

¤

Lemma 2.3 V P ² “Level by level equivalence holds”.

Proof: Suppose δ ≤ λ are regular cardinals such that V P ² “δ is λ strongly compact”. As has

already been observed, V ² “There are no measurable cardinals above κ”. Consequently, because

|P| = κ, the results of [11] allow us to infer that V P ² “There are no measurable cardinals above

κ”. Hence, because V P ² “κ is supercompact”, we may assume without loss of generality that

δ < κ.

Note that from its definition, P is mild with respect to δ. Thus, by the factorization of P (as

P′ ∗ Ṗ′′) given in Lemma 2.2 and Theorem 3, V ² “δ is λ strongly compact”. Since level by level

equivalence holds in V , V ² “δ is λ supercompact” as well. Further, it must be the case that

V ² “δ is superstrong”. (If not, then by the definition of P, V P ² “δ contains a non-reflecting

stationary set of ordinals of cofinality ω and thus is not weakly compact”.) Therefore, by Lemma

2.1, V P ² “δ is λ supercompact”. This completes the proof of Lemma 2.3.

¤

Lemma 2.4 V P ² “Every measurable cardinal δ is tall up to (σδ)
V ”.

Proof: Let δ 6= κ be such that V P ² “δ is measurable”. As in the proof of Lemma 2.3, we may

assume without loss of generality that δ < κ and that V ² “δ is superstrong”. Let λ < (σδ)
V be an

arbitrary inaccessible cardinal which is not a limit of inaccessible cardinals. By the factorization of
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P (as Pδ ∗ Ṗδ) given in Lemma 2.1, to show that V P ² “δ is λ tall”, it suffices to show that V Pδ ² “δ

is λ tall”.

To do this, we first observe that because V ² “δ is superstrong”, V ² “δ is λ strong”. (This

follows since an easy reflection argument shows that any superstrong cardinal is strong well beyond

the least measurable cardinal above it.) Using this fact, we will now argue in analogy to the proof

of [9, Theorem 4.1] (which itself uses ideas originally due to Magidor that are found in the proofs

of [2, Lemma 2.4] and [3, Lemma 2.3], as well as elsewhere in the literature), quoting freely (or

perhaps verbatim) from the relevant arguments when appropriate. Let j : V → M be an elementary

embedding witnessing the λ strongness of δ generated by a (δ, λ)-extender. We may assume without

loss of generality that M δ ⊆ M and that there is no (δ, λ)-extender F ∈ M (so that in particular,

M ² “δ is measurable but not superstrong”). The cardinal λ is large enough so that we may choose

a normal measure U ∈ M over δ having trivial Mitchell rank and let k : M → N be the elementary

embedding generated by U . As in [9, Theorem 4.1], i = k◦j is an elementary embedding witnessing

the λ tallness of δ. We show that i : V → N lifts in V Pδ to i : V Pδ → N i(Pδ). Because this lifted

embedding will witness the λ tallness of δ in V Pδ and λ was arbitrary, this will prove Lemma 2.4.

Let G0 be V -generic over Pδ. Since N ² “δ is not measurable”, only trivial forcing is done at

stage δ in NPδ in the definition of i(Pδ). Thus, we may write i(Pδ) = Pδ ∗ Q̇1 ∗ Q̇2, where Q̇1 is

forced to do nontrivial forcing at ordinals in the half-open interval (δ, k(δ)], and Q̇2 is forced to

do nontrivial forcing at ordinals in the open interval (k(δ), k(j(δ))), i.e., at ordinals in the open

interval (k(δ), i(δ)). We will build in V [G0] generic objects G1 and G2 for Q1 and Q2 respectively.

As it will be the case that i′′G0 ⊆ G0 ∗G1 ∗ G2, i will lift in V [G0] to i : V [G0] → N [G0][G1][G2],

and the proof of Lemma 2.4 will be complete.

To construct G1, note that since k is generated by the ultrafilter U over δ, by GCH in V , M ,

and N , V ² “|k(δ+)| = |k(2δ)| = |{f : f : δ → δ+}| = |[δ+]δ| = δ+”. Thus, as N [G0] ² “|℘(Q1)| =
|k(2δ)|”, we can let 〈Dα : α < δ+〉 ∈ V [G0] enumerate the dense open subsets of Q1 present in

N [G0]. Using the fact that Q1 is ≺δ+-strategically closed in N [G0], M [G0], and V [G0], the same

argument as given in the construction of the generic object G1 in the proof of [2, Lemma 2.4] is
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once again applicable and allows us to build in V [G0] an N [G0]-generic object G1 over Q1.

To construct G2, we first write j(Pδ) = Pδ ∗ Ṙ1 ∗ Ṙ2. Since M ² “δ is measurable but not

superstrong and there are no measurable cardinals in the half-open interval (δ, λ]”4, Ṙ1 is a term

for the partial ordering adding a non-reflecting stationary set of ordinals of cofinality ω to δ, and

the first ordinal at which Ṙ2 is forced to do nontrivial forcing is well beyond λ. Next, working in

M , we consider the “term forcing” partial ordering T (see [6] for the first published account of term

forcing or [5, Section 1.2.5, page 8]; the notion is originally due to Laver) associated with Ṙ2. This

is given by τ ∈ T iff τ is a term in the forcing language with respect to Pδ ∗Ṙ1 and °Pδ∗Ṙ1 “τ ∈ Ṙ2”,

with ordering τ1 ≥ τ0 iff °Pδ∗Ṙ1 “τ1 ≥ τ0”. As in the proof of [9, Theorem 4.1] (see also the proof

of [3, Lemma 2.3]), we may assume without loss of generality that M ² “|T| = j(δ)”. Since

°Pδ∗Ṙ1 “Ṙ2 is ≺δ+-strategically closed”, it can easily be verified that T is also ≺δ+-strategically

closed in M , and, since M δ ⊆ M , in V as well. In addition, because °Pδ∗Ṙ1 “Ṙ2 is λ-strategically

closed”, M ² “T is λ-strategically closed and hence is also (λ,∞)-distributive”.

Let X = {j(f)(δ, λ) : f ∈ V }. As in the proof of [9, Theorem 4.1], X ≺ M and X is isomorphic

to the ultrapower of V via the measure µ on δ × δ given by A ∈ µ iff 〈δ, λ〉 ∈ j(A). If we let

j0 : V → M0 be the ultrapower embedding by µ, then j = j1 ◦ j0, where j0 = π ◦ j for π the

Mostowski collapse of X to M0, j1 : M0 → M has critical point greater than δ, and j1 = π−1. The

situation is given by the commutative diagram

V

@
@

@
@

@
@

@
@@R

j0

M-j

M0

¡
¡

¡
¡

¡
¡

¡
¡¡µ

j1

If T0 = π(T) and λ0 = π(λ), then T0 has size j0(δ) in M0. Further, T0 is ≺δ+-strategically

4It is because M ² “λ is an inaccessible cardinal which is not a limit of inaccessible cardinals” (which of course
follows since Vλ ⊆ M) that we may infer that M ² “There are no measurable cardinals in the half-open interval
(δ, λ]”.
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closed in M0 and, since (M0)
δ ⊆ V , in V as well. The argument used in the construction of G1

may therefore be employed to construct in V an M0-generic object G∗
2 for T0.

We claim that the filter G∗∗
2 ⊆ T generated by j′′1G∗

2 is M -generic over T. To see this, let D ∈ M

be a dense open subset of T. Hence, D = j(f)(s) for some f : Vδ → V , where f ∈ V and s ∈ Vλ.

It therefore follows that D = j1(r)(s), where r = j0(f) ¹ (Vλ0)
M0 . We may assume that r(t) is a

dense open subset of T0 for every t ∈ (Vλ0)
M0 . Consequently, since M0 ² “|Vλ0| = λ0 and T0 is

(λ0,∞)-distributive”, D =
⋂

t∈(Vλ0
)M0 r(t) is a dense open subset of T0 in M0. It then follows that

D ∩G∗
2 6= ∅, which further implies that j1(D) ∩G∗∗

2 6= ∅. As j1(D) ⊆ D, D ∩G∗∗
2 6= ∅, i.e., G∗∗

2 is

M -generic over T.

Note now that since N is the ultrapower of M via the normal measure U ∈ M over δ, [5, Fact 2

of Section 1.2.2] tells us that k′′G∗∗
2 generates an N -generic object G∗∗∗

2 over k(T). By elementarity,

k(T) is the term forcing partial ordering defined in N with respect to k(j(Pδ)δ+1) = Pδ ∗ Q̇1.

Therefore, since i(Pδ) = k(j(Pδ)) = Pδ∗Q̇1∗Q̇2, G∗∗∗
2 is N -generic over k(T), and G0∗G1 is N -generic

over k(Pδ ∗ Ṙ1), [5, Fact 1 of Section 1.2.5] (see also [6]) tells us that G2 = {iG0∗G1(τ) : τ ∈ G∗∗∗
2 } is

N [G0][G1]-generic over Q2. It now follows that i lifts in V [G0] to i : V [G0] → N [G0][G1][G2], i.e.,

V [G0] ² “δ is λ tall”. This completes the proof of Lemma 2.4.

¤

Lemma 2.5 V P ² “Every measurable cardinal δ 6= κ is λδ tall, for some inaccessible cardinal

λδ > ρδ”.

Proof: As in the proof of Lemma 2.4, we may assume without loss of generality that δ < κ. In

addition, as in the proof of Lemma 2.3, P is mild with respect to δ. Therefore, by the factorization of

P (as P′∗Ṗ′′) given in Lemma 2.2 and Theorem 3, if V P ² “δ is α strongly compact”, then V ² “δ is α

strongly compact” as well. Consequently, since δ < κ, (ρδ)
V is defined, and (ρδ)

V P ≤ (ρδ)
V < (σδ)

V .

By Lemma 2.4 and its proof, V P ² “There is an inaccessible cardinal λδ > ρδ such that δ is λδ

tall”. This completes the proof of Lemma 2.5.

¤
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Since V P ² “Level by level equivalence holds and there are no measurable cardinals above κ”,

V P ² “κ is the only strongly compact cardinal”. This fact, together with Lemmas 2.1 – 2.5 and

the intervening remarks, complete the proof of Theorem 1.

¤

Having completed the proof of Theorem 1, we turn now to the proof of Theorem 2.

Proof: Suppose V ² “ZFC + GCH + κ < λ are such that κ is λ supercompact and λ is the least

inaccessible cardinal above κ + Level by level equivalence holds”. Without loss of generality (but

with a slight abuse of notation), we assume that κ is the least cardinal which is γ supercompact

for some inaccessible cardinal γ > κ. This immediately implies that no cardinal δ < κ is either

supercompact or strongly compact up to a measurable cardinal (and in fact, that no cardinal δ < κ

is either supercompact or strongly compact up to the second inaccessible cardinal above it).

Let B = {δ < κ : Either δ is a non-superstrong measurable cardinal or δ is not supercompact

up to the least inaccessible cardinal above it}. The partial ordering P used in the proof of Theorem

2 is then defined as the reverse Easton iteration of length κ which begins by adding a Cohen subset

of ω and then does nontrivial forcing only at stages δ ∈ B, where it adds a non-reflecting stationary

set of ordinals of cofinality ω to δ. Standard arguments once again show that V P ² GCH and that

V and V P have the same cardinals and cofinalities.

Lemma 2.6 V P ² “κ is λ supercompact”.

Proof: Let j : V → M be an elementary embedding witnessing the λ supercompactness of κ

generated by a supercompact ultrafilter over Pκ(λ). As in the proof of Lemma 2.1, note that

M ² “κ is superstrong”. Therefore, by the definition of P and the fact that M ² “λ is the least

inaccessible cardinal greater than κ and κ is supercompact up to λ”, j(P) = P ∗ Q̇, where the

first ordinal at which Q̇ is forced to do nontrivial forcing is well above λ. The same arguments as

used in the proof of Lemma 2.1 now show that j lifts in V P to a λ supercompactness embedding

j : V P → M j(P). This completes the proof of Lemma 2.6.

¤
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Using Lemma 2.6 and reflection, we may now let κ0 < κ be the smallest cardinal such that

V P ² “κ0 is supercompact up to some inaccessible cardinal λ0”. Without loss of generality, we

assume in addition that V P ² “λ0 is the least inaccessible cardinal above κ0”.

Lemma 2.7 V P ² “If δ < κ0 is measurable, then δ is strongly compact up to the least inaccessible

cardinal above it”.

Proof: We may assume that V ² “δ is both superstrong and supercompact up to the least

inaccessible cardinal above it”. (If this is not the case, then by the definition of P, V P ² “δ

contains a non-reflecting stationary set of ordinals of cofinality ω”.) Since |Pδ| = δ, this means

that we may write P = Pδ ∗ Ṗδ, where °Pδ
“Forcing with Ṗδ adds no bounded subsets to the least

measurable cardinal above δ”. In particular, °Pδ
“Forcing with Ṗδ adds no subsets to the least

inaccessible cardinal above δ”. Thus, in order to prove Lemma 2.7, it suffices to show that V Pδ ² “δ

is strongly compact up to the least inaccessible cardinal above it”.

To do this, let λ > δ be a regular cardinal below the least V -inaccessible cardinal above δ (which,

by the factorization of P given in the preceding paragraph, is the same as the least V P-inaccessible or

least V Pδ -inaccessible cardinal above δ). Take j : V → M as an elementary embedding witnessing

the λ supercompactness of δ generated by a supercompact ultrafilter over Pδ(λ) such that M ² “δ

is not λ supercompact”. Note that M ² “λ is below the least inaccessible cardinal above it”.

Therefore, by the definition of P, j(Pδ) = Pδ ∗ Ṙ1 ∗ Ṙ2, where Ṙ1 is a term for the partial ordering

adding a non-reflecting stationary set of ordinals of cofinality ω to δ, and the first ordinal at which

Ṙ2 is forced to do nontrivial forcing is well above λ. The same argument as found in the proofs

of [2, Lemma 2.4] and [3, Lemma 2.3] now shows that V Pδ ² “δ is λ strongly compact”.5 Since λ

5An outline of this argument is as follows. Let k : M → N be an elementary embedding generated by a normal
measure U ∈ M having trivial Mitchell rank. The elementary embedding i = k◦j witnesses the λ strong compactness
of δ in V . As in the proof of Lemma 2.4, this embedding lifts in V Pδ to an elementary embedding i : V Pδ → N i(Pδ)

witnessing the λ strong compactness of δ. This is shown by writing i(Pδ) = Pδ ∗ Q̇1 ∗ Q̇2, taking G0 to be V -generic
over Pδ, and building in V [G0] generic objects G1 and G2 for Q1 and Q2 respectively. The construction of G1 is
the same as that found for the generic object G1 in the proof of Lemma 2.4. The construction of G2 first requires
building an M -generic object G∗∗2 for the term forcing partial ordering T associated with Ṙ2 and defined in M with
respect to Pδ ∗ Ṙ1. The current G∗∗2 is built using the fact that since Mλ ⊆ M , T is ≺λ-strategically closed in both
M and V , which means that the diagonalization argument employed in the construction of G1 may be applied in
this situation as well. k′′G∗∗2 now generates an N -generic object G∗∗∗2 for k(T) and an N [G0][G1]-generic object G2

for Q2 as in the proof of Lemma 2.4. This means that i lifts in V [G0] to i : V [G0] → N [G0][G1][G2].
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was an arbitrary regular cardinal below the least V Pδ -inaccessible cardinal above δ, the proof of

Lemma 2.7 has consequently been completed.

¤

Lemma 2.8 V P ² “Every measurable cardinal δ < κ0 witnesses level by level inequivalence”.

Proof: By the choice of κ0, if V P ² “δ < κ0 is measurable”, then V P ² “θδ is below the least

inaccessible cardinal above it”. However, by Lemma 2.7, V P ² “δ is strongly compact up to the

least inaccessible cardinal above it”. This completes the proof of Lemma 2.8.

¤

Let V = (Vλ0)
V P . By the definition of P, V ² “There are unboundedly in κ0 many cardinals

δ < κ0 containing non-reflecting stationary sets of ordinals of cofinality ω”. Therefore, by [12,

Theorem 4.8] and the succeeding remarks, V ² “No cardinal δ < κ0 is strongly compact”. In

addition, using the factorization of P (as Pδ ∗ Ṗδ) given in Lemma 2.7, the same arguments as

found in the proofs of Lemmas 2.4 and 2.5 show that V P ² “Every measurable cardinal δ < κ0 is

λδ tall, for some inaccessible cardinal λδ > ρδ”. These facts, together with Lemmas 2.6 – 2.8, the

intervening remarks, and the fact that V ² “No cardinal above κ0 is inaccessible”, complete the

proof of Theorem 2.

¤

Since |Pδ| = δ in the above proofs, the results of [11] imply that for any ordinal γ in the open

interval (δ, σδ), the least weakly compact cardinal above γ, the least Ramsey cardinal above γ, the

least Ramsey limit of Ramsey cardinals above γ, or in general, any large cardinal provably in the

open interval (γ, σδ) for which the results of [11] hold are the same in V and V Pδ . It is for this

reason, together with the fact that °Pδ
“Ṗδ is ≺(σδ)

V -strategically closed and (σδ)
V = (σδ)

V Pδ ”,

that the witnessing models for Theorems 1 and 2 have each non-supercompact measurable cardinal

δ exhibit λδ tallness for λδ the least weakly compact cardinal above ρδ, the least Ramsey cardinal

above ρδ, the least Ramsey limit of Ramsey cardinals above ρδ, etc. On the other hand, our

13



methods of proof seem to require ground models with a severely restricted large cardinal structure

(although the same proof techniques will allow, e.g., the definition of λ in Theorem 2 to be changed

to the least weakly compact cardinal above κ, thereby giving a model witnessing the conclusions of

Theorem 2 with a slightly richer large cardinal structure). We conclude by asking if it is possible

to remove these restrictions, and obtain results analogous to those of this paper in which the large

cardinal structure of the universe can be arbitrary.
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