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Motivation

Sophisticated optimal liquidation portfolio algorithms that balance
risk against impact cost involve inverting the covariance matrix.
Eigenvalues of the covariance matrix that are small (or evenzero)
correspond to portfolios of stocks that have nonzero returns but
extremely low or vanishing risk; such portfolios are invariably
related to estimation errors resulting from insu�ent data.One of
the approaches used to eliminate the problem of small eigenvalues
in the estimated covariance matrix is the so-calledrandom matrix
technique. We would like to understand:

the basis of random matrix theory. (RMT)

how to apply RMT to the estimation of covariance matrices.

whether the resulting covariance matrix performs better than
(for example) the Barra covariance matrix.
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Example 1: Normal random symmetric matrix

Generate a 5,000 x 5,000 random symmetric matrix with
entriesaij � N(0; 1).

Compute eigenvalues.

Draw a histogram.

Here's some R-code to generate a symmetric random matrix whose
o�-diagonal elements have variance 1=N:

n <- 5000;
m <- array(rnorm(n^2),c(n,n));
m2 <- (m+t(m))/sqrt(2*n);# Make m symmetric
lambda <- eigen(m2, symmetric=T, only.values = T);
e <- lambda$values;
hist(e,breaks=seq(-2.01,2.01,.02),

main=NA, xlab="Eigenvalues",freq=F)
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Example 1: continued

Here's the result:
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Example 2: Uniform random symmetric matrix

Generate a 5,000 x 5,000 random symmetric matrix with
entriesaij � Uniform(0; 1).
Compute eigenvalues.
Draw a histogram.

Here's some R-code again:

n <- 5000;
mu <- array(runif(n^2),c(n,n));
mu2 <-sqrt(12)*(mu+t(mu)-1)/sqrt(2*n);
lambdau <- eigen(mu2, symmetric=T, only.values = T);
eu <- lambdau$values;
hist(eu,breaks=seq(-2.05,2.05,.02),main=NA,xlab="Ei genvalues",
eu <- lambdau$values;
histeu<-hist(eu,breaks=seq(-2.01,2.01,0.02),

main=NA, xlab="Eigenvalues",freq=F)
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Example 2: continued

Here's the result:
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What do we see?

We note a striking pattern: the density of eigenvalues is a
semicircle!
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Wigner's semicircle law

Consider anN � N matrix ~A with entries ~aij � N(0; � 2). De�ne

AN =
1

p
2N

n
~A + ~A0

o

Then AN is symmetric with

Var[aij ] =
�

� 2=N if i 6= j
2� 2=N if i = j

The density of eigenvalues ofAN is given by

� N (� ) :=
1
N

NX

i =1

� (� � � i )

����!
N!1

�
1

2 � � 2

p
4� 2 � � 2 if j� j � 2 �

0 otherwise.
=: � (� )
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Example 1: Normal random matrix with Wigner density

Now superimpose the Wigner semicircle density:
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Example 2: Uniform random matrix with Wigner density

Again superimpose the Wigner semicircle density:
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Random correlation matrices

Suppose we haveM stock return series withT elements each. The
elements of theM � M empirical correlation matrixE are given by

Eij =
1
T

TX

t

xit xjt

wherexit denotes thet th return of stocki , normalized by standard
deviation so that Var[xit ] = 1.
In matrix form, this may be written as

E = H H 0

whereH is the M � T matrix whose rows are the time series of
returns, one for each stock.
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Eigenvalue spectrum of random correlation matrix

Suppose the entries ofH are random with variance� 2. Then, in
the limit T ; M ! 1 keeping the ratioQ := T =M � 1 constant,
the density of eigenvalues ofE is given by

� (� ) =
Q

2� � 2

p
(� + � � )( � � � � )

�

where the maximum and minimum eigenvalues are given by

� � = � 2

 

1 �

r
1
Q

! 2

� (� ) is known as the Mar�cenko-Pastur density.
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Example: IID random normal returns

Here's some R-code again:

t <- 5000;
m <- 1000;
h <- array(rnorm(m*t),c(m,t)); # Time series in rows
e <- h %*% t(h)/t; # Form the correlation matrix
lambdae <- eigen(e, symmetric=T, only.values = T);
ee <- lambdae$values;
hist(ee,breaks=seq(0.01,3.01,.02),
main=NA,xlab="Eigenvalues",freq=F)
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Here's the result with the Mar�cenko-Pastur density superimposed:
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Here's the result withM = 100; T = 500 (again with the
Mar�cenko-Pastur density superimposed):
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...and again withM = 10; T = 50:
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We see that even for rather small matrices, the theoretical limiting
density approximates the actual density very well.
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Some Mar�cenko-Pastur densities

The Mar�cenko-Pastur density depends onQ = T =M. Here are
graphs of the density forQ = 1 (blue), 2 (green) and 5 (red).
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Distribution of the largest eigenvalue

For applications where we would like to know where the
random bulk of eigenvalues ends and the spectrum of
eigenvalues corresponding to true information begins, we need
to know the distribution of the largest eigenvalue.

The distribution of the largest eigenvalue of a random
correlation matrix is given by the Tracy-Widom law.

Pr(T � max < � TM + s � TM ) = F1(s)

with

� TM =
� p

T � 1=2 +
p

M � 1=2
� 2

� TM =
� p

T � 1=2 +
p

M � 1=2
�

 
1

p
T � 1=2

+
1

p
M � 1=2

! 1=3
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Fat-tailed random matrices

So far, we have considered matrices whose entries are either
Gaussian or drawn from distributions with �nite moments.
Suppose that entries are drawn from a fat-tailed distribution
such as L�evy-stable.

This is of practical interest because we know that stock
returns follow a cubic law and so are fat-tailed.

Bouchaud et. al. �nd that fat tails can massively increase the
maximum eigenvalue in the theoretical limiting spectrum of
the random matrix.

Where the distribution of matrix entries is extremely fat-tailed
(Cauchy for example) , the semi-circle law no longer holds.
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Sampling error

Suppose we compute the sample correlation matrix ofM
stocks withT returns in each time series.

Further suppose that the true correlation were the identity
matrix. What would we expect the greatest sample correlation
to be?

For N(0; 1) distributed returns, the median maximum
correlation� max should satisfy:

log 2 �
M (M � 1)

2
N

�
� � max

p
T

�

With M = 500,T = 1000, we obtain� max � 0:14.

So, sampling error induces spurious (and potentially
signi�cant) correlations between stocks!
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An experiment with real data

We take 431 stocks in the SPX index for which we have
2; 155 = 5 � 431 consecutive daily returns.

Thus, in this case,M = 431 and T = 2 ; 155. Q = T =M = 5 :
There areM (M � 1)=2 = 92; 665 distinct entries in the
correlation matrix to be estimated from
2; 155� 431 = 928; 805 data points.
With these parameters, we would expect the maximum error in
our correlation estimates to be around 0:09.

First, we compute the eigenvalue spectrum and superimpose
the Mar�cenko Pastur density withQ = 5.
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The eigenvalue spectrum of the sample correlation matrix

Here's the result:
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Note that the top eigenvalue is 105:37 { way o� the end of the
chart! The next biggest eigenvalue is 18:73.



Introduction Random matrix theory Estimating correlations Comparison with Barra Conclusion Appendix

With randomized return data

Suppose we now shu�e the returns in each time series. We obtain:
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Repeat 1,000 times and average

Repeating this 1,000 times gives:
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Distribution of largest eigenvalue

We can compare the empirical distribution of the largest eigenvalue
with the Tracy-Widom density (in red):
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Interim conclusions

From this simple experiment, we note that:
Even though return series are fat-tailed,

the Mar�cenko-Pastur density is a very good approximation to
the density of eigenvalues of the correlation matrix of the
randomized returns.
the Tracy-Widom density is a good approximation to the
density of the largest eigenvalue of the correlation matrixof
the randomized returns.

The Mar�cenko-Pastur density does not remotely �t the
eigenvalue spectrum of the sample correlation matrix from
which we conclude that there is nonrandom structure in the
return data.

We may compute the theoretical spectrum arbitrarily
accurately by performing numerical simulations.
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Problem formulation

Which eigenvalues are signi�cant and how do we interpret their
corresponding eigenvectors?
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A hand-waving practical approach

Suppose we �nd the values of� and Q that best �t the bulk
of the eigenvalue spectrum. We �nd

� = 0 :73; Q = 2 :90

and obtain the following plot:
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Maximum and minimum Mar�cenko-Pastur eigenvalues are
1.34 and 0.09 respectively. Finiteness e�ects could take the
maximum eigenvalue to 1.38 at the most.
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Some analysis

If we are to believe this estimate, a fraction� 2 = 0 :53 of the
variance is explained by eigenvalues that correspond to
random noise. The remaining fraction 0:47 has information.

From the plot, it looks as if we should cut o� eigenvalues
above 1.5 or so.

Summing the eigenvalues themselves, we �nd that 0:49 of the
variance is explained by eigenvalues greater than 1:5

Similarly, we �nd that 0:47 of the variance is explained by
eigenvalues greater than 1:78

The two estimates are pretty consistent!
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More carefully: correlation matrix of residual returns

Now, for each stock, subtract factor returns associated with
the top 25 eigenvalues (� > 1:6).

We �nd that � = 1; Q = 4 gives the best �t of the
Mar�cenko-Pastur density and obtain the following plot:
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Maximum and minimum Mar�cenko-Pastur eigenvalues are
2.25 and 0.25 respectively.
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Distribution of eigenvector components

If there is no information in an eigenvector, we expect the
distribution of the components to be a maximum entropy
distribution.
Speci�cally, if we normalized the eigenvectoru such that its
componentsui satisfy

MX

i

u2
i = M;

the distribution of theui should have the limiting density

p(u) =

r
1

2�
exp

�
�

u2

2

�

Let's now superimpose the empirical distribution of
eigenvector components and the zero-information limiting
density for various eigenvalues.
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Informative eigenvalues

Here are pictures for the six largest eigenvalues:

Eigenvector #1 = 105.37
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Eigenvector #4 = 9.81
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Eigenvector #5 = 6.99
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Eigenvector #6 = 6.4
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Non-informative eigenvalues

Here are pictures for six eigenvalues in the bulk of the distribution:

Eigenvector #25 = 1.62
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Eigenvector #100 = 0.85
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Eigenvector #175 = 0.6
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Eigenvector #250 = 0.43
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Eigenvector #325 = 0.29
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Eigenvector #400 = 0.17
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The resulting recipe

1 Fit the Mar�cenko-Pastur distribution to the empirical density
to determineQ and � .

2 All eigenvalues above some number� � are considered
informative; otherwise eigenvalues relate to noise.

3 Replace all noise-related eigenvalues� i below� � with a
constant and renormalize so that

P M
i =1 � i = M.

Recall that each eigenvalue relates to the variance of a
portfolio of stocks. A very small eigenvalue means that there
exists a portfolio of stocks with very small out-of-sample
variance { something we probably don't believe.

4 Undo the diagonalization of the sample correlation matrixC
to obtain the denoised estimateC0.

Remember to set diagonal elements ofC0 to 1!
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Comparison with Barra

We might wonder how this random matrix recipe compares to
Barra.
For example:

How similar are the top eigenvectors of the sample and Barra
matrices?
How similar are the eigenvalue densities of the �ltered and
Barra matrices?
How do the minimum variance portfolios compare in-sample
and out-of-sample?
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Comparing the top eigenvector

We compare the eigenvectors corresponding to the top
eigenvalue (the market components) of the sample and Barra
correlation matrices:
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The eigenvectors are rather similar except for Newmont
(NEM) which has no weight in the sample market component.
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The next four eigenvectors

The next four are:
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The �rst three of these are very similar but #5 diverges.
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The minimum variance portfolio

We may construct a minimum variance portfolio by
minimizing the variancew0:� :w subject to

P
i wi = 1.

The weights in the minimum variance portfolio are given by

wi =

P
j � � 1

ijP
i ;j � � 1

ij

where� � 1
ij are the elements of� � 1.

We compute characteristics of the minimum variance
portfolios corresponding to

the sample covariance matrix
the �ltered covariance matrix (keeping only the top 25 factors)
the Barra covariance matrix
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Comparison of portfolios

We compute the minimum variance portfolios given the
sample, �ltered and Barra correlation matrices respectively.

From the picture below, we see that the �ltered portfolio is
closer to the Barra portfolio than the sample portfolio.
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Consistent with the pictures, we �nd that the absolute
position sizes (adding long and short sizes) are:
Sample: 4.50; Filtered: 3.82; Barra: 3.40
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In-sample performance

In sample, these portfolios performed as follows:
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Figure: Sample in red, �ltered in blue and Barra in green.
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In-sample characteristics

In-sample statistics are:

Volatility Max Drawdown
Sample 0.523% 18.8%
Filtered 0.542% 17.7%
Barra 0.725% 55.5%

Naturally, the sample portfolio has the lowest in-sample
volatility.
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Out of sample comparison

We plot minimum variance portfolio returns from 04/26/2007
to 09/28/2007.
The sample, �ltered and Barra portfolio performances are in
red, blue and green respectively.
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Sample and �ltered portfolio performances are pretty similar
and both much better than Barra!
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Out of sample summary statistics

Portfolio volatilities and maximum drawdowns are as follows:

Volatility Max Drawdown
Sample 0.811% 8.65%
Filtered 0.808% 7.96%
Barra 0.924% 10.63%

The minimum variance portfolio computed from the �ltered
covariance matrix wins according to both measures!

However, the sample covariance matrix doesn't do too badly ...
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Main result

It seems that the RMT �ltered sample correlation matrix
performs better than Barra.

Although our results here indicate little improvement overthe
sample covariance matrix from �ltering, that is probably
because we hadQ = 5.
In practice, we are likely to be dealing with more stocks (M
greater) and fewer observations (T smaller).

Moreover, the �ltering technique is easy to implement.
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When and when not to use a factor model

Quoting from Fan, Fan and Lv:

The advantage of the factor model lies in the estimation of
the inverse of the covariance matrix, not the estimation of the
covariance matrix itself. When the parameters involve the
inverse of the covariance matrix, the factor model shows
substantial gains, whereas when the parameters involved the
covariance matrix directly, the factor model does not have
much advantage.
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Moral of the story

Fan, Fan and Lv's conclusion can be extended to all techniques for
"improving" the covariance matrix:

In applications such as portfolio optimization where the
inverse of the covariance matrix is required, it is important to
use a better estimate of the covariance matrix than the
sample covariance matrix.

Noise in the sample covariance estimate leads to spurious
sub-portfolios with very low or zero predicted variance.

In applications such as risk management where only a good
estimate of risk is required, the sample covariance matrix
(which is unbiased) should be used.
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Miscellaneous thoughts/ observations

There are reasons to think that the RMT recipe might be
robust to changes in details:

It doesn't really seem to matter much exactly how many
factors you keep.
In particular, Tracy-Widom seems to be irrelevant in practice.

The better performance of the RMT correlation matrix
relative to Barra probably relates to the RMT �ltered matrix
uncovering real correlation structure in the time series data
which Barra does not capture.
With Q = 5, the sample covariance matrix does very well,
even when it is inverted. That suggests that the key to
improving prediction is to reduce sampling error in correlation
estimates.

Maybe subsampling (hourly for example) would help...
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Wigner's proof

The Eigenvalue Trace Formula

For any real symmetric matrixA, 9 a unitary matrixU consisting
of the (normalized) eigenvectors ofA such that

L = U0A U

is diagonal. The entries� i of L are the eigenvalues ofA.
Noting that Lk = U0Ak U it follows that the eigenvalues ofAk are
� k

i . In particular,

Tr
h
Ak

i
= Tr

h
Lk

i
=

NX

i

� k
i ! N E[� k ] as N ! 1

That is, the kth moment of the distribution� (� ) of eigenvalues is
given by

E[� k ] = lim
N!1

1
N

Tr
h
Ak

i
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Wigner's proof

Matching moments

Then, to prove Wigner's semi-circle law, we need to show thatthe
moments of the semicircle distribution are equal to the the traces
on the right hand side in the limitN ! 1 .
For example, ifA is a Wigner matrix,

1
N

Tr [A] =
1
N

NX

i

aii ! 0 as N ! 1

and 0 is the �rst moment of the semi-circle density.
Now for the second moment:

1
N

Tr
�
A2�

=
1
N

NX

i ;j

aij aji =
1
N

NX

i ;j

a2
ij ! � 2 as N ! 1

It is easy to check that� 2 is the second moment of the semi-circle
density.
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Wigner's proof

The third moment

1
N

Tr
�
A3�

=
1
N

NX

i ;j ;k

aij ajk aki

Because theaij are assumediid, this sum tends to zero. This is
true for all odd powers ofA and because the semi-circle law is
symmetric, all odd moments are zero.
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Wigner's proof

The fourth moment

1
N

Tr
�
A4�

=
1
N

NX

i ;j ;k;l

aij ajk akl ali

To get a nonzero contribution to this sum in the limitN ! 1 , we
must have at least two pairs of indices equal. We also get a
nonzero contribution from theN cases where all four indices are
equal but that contribution goes away in the limitN ! 1 . Terms
involving diagonal entriesaii also vanish in the limit. In the case
k = 4, we are left with two distinct terms to give

1
N

Tr
�
A4�

=
1
N

NX

i ;j ;k;l

f aij aji ail ali + aij ajk akj aji g ! 2� 2 as N ! 1

Naturally, 2� 2 is the fourth moment of the semi-circle density.
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Wigner's proof

Higher moments

One can show that, for integerk � 1,

lim
N!1

1
N

Tr
h
A2 k

i
=

(2 k)!
k! (k + 1)!

� 2 k

and
Z 2 �

� 2 �
� (� ) � 2 k d� =

Z 2 �

� 2 �

� 2 k

2� � 2

p
4� 2 � � 2 d� =

(2 k)!
k! (k + 1)!

� 2 k

which is the 2kth moment of the semi-circle density, proving the
Wigner semi-circle law.
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Wigner's proof

Comments on the result and its proof

The elementsaij of A don't need to be normally distributed.
In Wigner's original proof,aij = � � for some �xed� .

However, we do need the higher moments of the distribution of
the aij to vanish su�ciently rapidly.
In practice, this means that if returns are fat-tailed, we need to
be careful.

The Wigner semi-circle law is like a Central Limit theorem for
random matrices.
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