PRIMER NOTE

Isolation and characterization of polymorphic microsatellite loci in Bornean treeshrews (Tupaia spp.)

J. MUNSHI-SOUTH and G. S. WILKINSON
Behavior, Ecology, Evolution and Systematics Program, Department of Biology, University of Maryland, College Park, Maryland 20742, USA

Abstract

In this study, we developed five microsatellite loci from an enriched genomic library constructed for the pygmy treeshrew (Tupaia minor), and adapted another two from a previous study on the common treeshrew (Tupaia glis), for use in studying mating and dispersal patterns in Bornean treeshrews. We screened 32 plain treeshrew (Tupaia longipes) and 54 large treeshrew (Tupaia tana) individuals at these loci. Polymorphism ranged from two to 13 alleles, and heterozygosity ranged from 0.29 to 0.88. These results indicate the general utility of these microsatellites for genetic analyses in other Tupaia spp.

Keywords: Borneo, cross-species amplification, microsatellite, Scandentia, treeshrew, Tupaia, Tupaiidae

Received 08 November 2005; revision accepted 08 January 2006

The treeshrews (Tupaiidae, Scandentia) are little-known but common mammalian inhabitants of the Indomalayan tropics. Their close phylogenetic affinity with primates (Sargis 2004) and relatively rare behavioural traits of absentee maternal care and social monogamy (Emmons 2000) have recently attracted attention from researchers. Male-female treeshrew pairs defend joint territories against same-sex conspecifics, but individuals typically have access to extra-pair mates at the edges of their territorial boundaries, especially when ecological conditions are favourable (Munshi-South et al. unpublished manuscript). We developed five new polymorphic microsatellites from a genomic library created from pygmy treeshrew (Tupaia minor) DNA, and then adapted them for a study of mating and dispersal patterns in the large treeshrew (Tupaia tana) and plain treeshrew (Tupaia longipes) in Sabah, Malaysia (NE Borneo). We also designed six primer pairs for microsatellite loci previously sequenced from the common treeshrew (Tupaia glis, Srikwan et al. 2002), but only two produced polymorphic polymerase chain reaction (PCR) products from both T. tana and T. longipes DNA (SKTg19 and SKTg22, Table 1).

After digesting T. minor DNA with NheI, XmnI, AluI and BamHI (New England Biolabs (NEB)), we created a genomic library enriched for a dinucleotide repeat motif using the standard protocol of Hamilton et al. (1999). The enriched library was cloned into XbaI-digested P-bluescript SK+ plasmid vectors (Stratagene), and transformed into Escherichia coli Supercompetent cells (Stratagene) for cloning. Positive colonies were picked and heated for 10 min at 100 °C in 200 µL TE (10 mM Tris-HCl, 0.1 mM EDTA, pH 8.0). PCR of cloned DNA contained the following in a total volume of 30 µL: 50–100 ng DNA from each colony, 0.5 U Vent polymerase (NEB), 1 × Thermopol buffer (NEB), 0.2 mM of each dNTP, and 8 µM of T3 and T7 primers. We used a PCR profile of 96 °C for 5 min followed by 30 cycles at 96 °C for 45 s, 51 °C for 1 min and 72 °C for 2 min. PCR products were run in 2% ethidium bromide agarose gels to identify genomic DNA inserts of 70–1000 bp. We cleaned PCR products using the QIAquick PCR purification kit (QIAGEN) and sequenced in one direction using the ABI BigDye ready reaction kit (Applied Biosystems). If clones contained microsatellites with at least seven dinucleotide repeats, then we sequenced them in the reverse direction and examined the resulting sequences in SEQUENCHER 4.1 (Gene Codes).

We designed flanking primers for 18 sequences containing microsatellites using the PRIMER 3 program (Rozen & Skaletsky 2000). We optimized primers for PCR amplification in T. tana and T. longipes using either a gradient or touchdown cycle on a PTC-200 Programmable Thermal Cycler (MJ Research). The annealing temperature in the touchdown program began at 65 °C and then decreased...
Characteristics of microsatellite loci amplified from two species of Bornean treeshrets

<table>
<thead>
<tr>
<th>Locus</th>
<th>Motif</th>
<th>Primer sequence (5′−3′)</th>
<th>Size range (bp)</th>
<th>No. of typed treeshrets</th>
<th>No. of alleles</th>
<th>Annealing temp. (°C)</th>
<th>Accession no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>JS22</td>
<td>(GT)₃C</td>
<td>F: CAACTTCCGTGGGTTTATG</td>
<td>Ti: 156−180</td>
<td>Ti: 32</td>
<td>Ti: 0.88</td>
<td>35 cycles;</td>
<td>DQ334277</td>
</tr>
<tr>
<td>JS32</td>
<td>(GT)₃₄</td>
<td>R: GAACTGTGCACATCCTGAC</td>
<td>Ti: 157−183</td>
<td>Ti: 48</td>
<td>Ti: 0.79</td>
<td>65−0.5 cycle</td>
<td>DQ334278</td>
</tr>
<tr>
<td>JS132</td>
<td>(GT)₃₅</td>
<td>G: GCCAACCAGGTTTATGCCC</td>
<td>Ti: 219−259</td>
<td>Ti: 29</td>
<td>Ti: 0.79</td>
<td>65−0.5 cycle</td>
<td></td>
</tr>
<tr>
<td>JS183</td>
<td>(GT)₈</td>
<td>R: TCTTTTGTGGAAGACGCG</td>
<td>Ti: 256−256</td>
<td>Ti: 2</td>
<td>Ti: 0.29</td>
<td>65−0.5 cycle</td>
<td></td>
</tr>
<tr>
<td>JS188</td>
<td>(CA)₃</td>
<td>G: GAAACATTACCCGGCTACCTG</td>
<td>Ti: 115−153</td>
<td>Ti: 25</td>
<td>Ti: 0.73</td>
<td>35 cycles;</td>
<td>DQ334279</td>
</tr>
<tr>
<td>JS196</td>
<td>(GT)₉</td>
<td>R: TTCACGTAGAATATGACC</td>
<td>Ti: 132−166</td>
<td>Ti: 54</td>
<td>Ti: 0.60</td>
<td>65−0.5 cycle</td>
<td></td>
</tr>
<tr>
<td>SKTg19</td>
<td>(CA)₂₆</td>
<td>F: ACAGCAAGAATCTTATCACC</td>
<td>Ti: 170−200</td>
<td>Ti: 30</td>
<td>Ti: 0.77</td>
<td>65−0.5 cycle</td>
<td></td>
</tr>
<tr>
<td>SKTg22</td>
<td>(CA)₂₆</td>
<td>R: TAAATACCTGACTTTCACG</td>
<td>Ti: 176−190</td>
<td>Ti: 51</td>
<td>Ti: 0.66</td>
<td>57</td>
<td></td>
</tr>
</tbody>
</table>

F, forward primer; R, reverse primer; Ti, Tupaia longipes; Tt, Tupaia tana.

Acknowledgements

We thank T. Wright for indispensable assistance with microsatellite development, and E. Eizirik for providing the Tupaia minor DNA samples. Laboratory research was supported by NSF grants DEB-0077878 and DEB-0343617 (G.S.W.). Field work and sample collection were permitted by the Economic Planning Unit of the Malaysian Prime Minister’s Office, the Sabah Wildlife Department, the Danum Valley Management Committee, and the University of Maryland Institutional Animal Care and Use Committee.

References


© 2006 Blackwell Publishing Ltd, Molecular Ecology Notes, 10.1111/j.1471-8286.2006.01314.x