Explaining the Level of Credit Spreads:
Option-Implied Jump Risk Premia in a Firm Value Model

Authors: M. Cremers, J. Driessen, P. Maenhout

Discussant: Liuren Wu
Baruch College

http://faculty.baruch.cuny.edu/lwu/
Overview of the paper

- Motivation: Several academic studies conclude that the observed credit spread is too wide (credit spread “puzzle”) compared to historical default losses.
Overview of the paper

- Motivation: Several academic studies conclude that the observed credit spread is too wide (credit spread “puzzle”) compared to historical default losses.

- Specify a one-factor market model on firm values,
 - Market risk and firm-specific risk are both modeled by jump-diffusions.
Overview of the paper

■ Motivation: Several academic studies conclude that the observed credit spread is too wide (credit spread “puzzle”) compared to historical default losses.

■ Specify a one-factor market model on firm values,
 - Market risk and firm-specific risk are both modeled by jump-diffusions.

■ Calibrate the model to
 - Option prices on S&P 100 index and its constituents.
 - Equity risk premium.
Overview of the paper

- Motivation: Several academic studies conclude that the observed credit spread is too wide (credit spread “puzzle”) compared to historical default losses.

- Specify a one-factor market model on firm values,
 - Market risk and firm-specific risk are both modeled by jump-diffusions.

- Calibrate the model to
 - Option prices on S&P 100 index and its constituents.
 - Equity risk premium.

- Key findings:
 - Incorporating jump risk premia (and calibrating them to options) is important to generate reasonable credit spreads.
Ambitious work

■ What they have done is daunting:
 ◆ Firm value process \rightarrow credit spread on corporate bond.
 ⇔ Stock value as an option on firm value
 ⇔ stock option as a compound option on firm value
 ⇔ stock index as a portfolio of options on firm value
 ⇔ stock index options as options on a portfolio of options on the firm value.

■ The model is very detailed, with convoluted linkages.
Ambitious work

What they have done is daunting:

- Firm value process \rightarrow credit spread on corporate bond.
 \iff Stock value as an option on firm value
 \iff stock option as a compound option on firm value
 \iff stock index as a portfolio of options on firm value
 \iff stock index options as options on a portfolio of options on the firm value.

The model is very *detailed*, with convoluted linkages.

To make the calibration feasible, the model/calibration need to be *highly stylized*:

- Firm value dynamics are identical across different firms (same β).
- Static abstractions: constant volatility, constant arrival rate ...
- Static calibrations using cross-sectional and time-series averages.
Ambitious work

- What they have done is daunting:
 - Firm value process \rightarrow credit spread on corporate bond.
 \Leftrightarrow Stock value as an option on firm value
 \Leftrightarrow stock option as a compound option on firm value
 \Leftrightarrow stock index as a portfolio of options on firm value
 \Leftrightarrow stock index options as options on a portfolio of options on the firm value.

- The model is very detailed, with convoluted linkages.

- To make the calibration feasible, the model/calibration need to be highly stylized:
 - Firm value dynamics are identical across different firms (same β).
 - Static abstractions: constant volatility, constant arrival rate ...
 - Static calibrations using cross-sectional and time-series averages.

- Give and take: To build a detailed model and make calibration possible, the model/calibration need to be highly stylized.
Path to success

- Key claim of success: The paper can calibrate a structural model to generate reasonable credit spreads and hence solve the “credit risk premium puzzle.”
Path to success

- Key claim of success: The paper can calibrate a structural model to generate reasonable credit spreads and hence solve the “credit risk premium puzzle.”

- Where there is risk, there is a risk premium puzzle.
 - Stock market — equity risk premium puzzle.
 - Stock options market — jump risk premium puzzle.
 - Corporate bond market — credit risk premium puzzle.
 - Other markets: currency (forward risk premium), bond (term risk premium)...
 - Different markets, same complaint: (1) too large, (2) strongly time varying.
Path to success

- Key claim of success: The paper can calibrate a structural model to generate reasonable credit spreads and hence solve the “credit risk premium puzzle.”

- *Where there is risk, there is a risk premium puzzle.*

 - Stock market — *equity* risk premium puzzle.

 - Stock options market — *jump* risk premium puzzle.

 - (Defaultable) bond market — *credit* risk premium puzzle.
Path to success

- Key claim of success: The paper can calibrate a structural model to generate reasonable credit spreads and hence solve the “credit risk premium puzzle.”

- *Where there is risk, there is a risk premium puzzle.*
 - Stock market — equity risk premium puzzle.
 - Stock options market — jump risk premium puzzle.
 - (Defaultable) bond market — credit risk premium puzzle.

- The risk premiums charged by stock (options) investors are consistent with the risk premiums charged by corporate bond investors.
Key claim of success: The paper can calibrate a structural model to generate reasonable credit spreads and hence solve the “credit risk premium puzzle.”

Where there is risk, there is a risk premium puzzle.

- Stock market — equity risk premium puzzle.
- Stock options market — jump risk premium puzzle.
- (Defaultable) bond market — credit risk premium puzzle.

The risk premiums charged by stock (options) investors are consistent with the risk premiums charged by corporate bond investors.

Longstaff, Mithal, Neis: Credit spreads on corporate bonds are largely consistent with CDS.
Key claim of success: The paper can calibrate a structural model to generate reasonable credit spreads and hence solve the “credit risk premium puzzle.”

Where there is risk, there is a risk premium puzzle.

- Stock market — equity risk premium puzzle.
- Stock options market — jump risk premium puzzle.
- (Defaultable) bond market — credit risk premium puzzle.

The risk premiums charged by stock (options) investors are consistent with the risk premiums charged by corporate bond investors.

Longstaff, Mithal, Neis: Credit spreads on corporate bonds are largely consistent with CDS.

⇒ Investors in different financial markets are largely consistent with one another, but might be inconsistent with the academia...
I agree with the conclusions:

- Incorporating jump risk (risk premia) is important to reconcile the difference between the statistical and risk-neutral distributions on stocks and stock indices.

- Structural models are useful in bringing in the capital structure information to corporate bond valuation.
I agree with the conclusions:
- Incorporating jump risk (risk premia) is important to reconcile the difference between the statistical and risk-neutral distributions on stocks and stock indices.
- Structural models are useful in bringing in the capital structure information to corporate bond valuation.

Questions:
- *What’s the best way to model/calibrate jump risk and/or risk premium?*
- *What’s the best way to incorporate capital structure information?*
I agree with the conclusions:

- Incorporating jump risk (risk premia) is important to reconcile the difference between the statistical and risk-neutral distributions on stocks and stock indices.
- Structural models are useful in bringing in the capital structure information to corporate bond valuation.

Questions:

- What’s the best way to model/calibrate jump risk and/or risk premium?
- What’s the best way to incorporate capital structure information?

Can I simplify the model structure a bit to make the estimation more dynamic and less stylized?
Design questions

■ If firms are identical, can we use a representative firm to arrive at the same conclusion?
Design questions

- If firms are identical, can we use a representative firm to arrive at the same conclusion?

- Is it possible to calibrate firm value dynamics to stock options (and other info) on one firm (without dragging in stock index options)?
 - Index options are useful to identify the pricing of a market factor.
 - Single-name options are probably enough to identify the risk/pricing on that specific company and hence reconcile the credit spread on the same firm.
Design questions

- If firms are identical, can we use a representative firm to arrive at the same conclusion?

- Is it possible to calibrate firm value dynamics to stock options (and other info) on one firm (without dragging in stock index options)?
 - Index options are useful to identify the pricing of a market factor.
 - Single-name options are probably enough to identify the risk/pricing on that specific company and hence reconcile the credit spread on the same firm.

- *What is causing what to jump?* Firm value = equity value + debt value.
 - Firm value jump → stock price jump, credit spread jump.
 - Stock price (market risk, perception of market risk) jump → firm value jump, credit spread jump?
 - (Perception of) credit risk jump → stock price jump, firm value jump?
An alternative framework

- Stock price jumps to zero whenever default occurs.
 - Stock option prices can be used to identify “risk-neutral” default intensity → implications for “out-of-sample” bond pricing.
 - It can be used to address similar questions: whether credit spread is consistent with stock option prices.

- Simplified linkage can accommodate more realistic dynamics:
 - Both default arrival and return volatility can be stochastic.
 - Leverage effect can be introduced through correlations between return and volatility.

- Pricing and model estimation are very simple and fast.
Bottom line

■ I love what they are doing:
 ◆ Linking one market to another (and showing consistency) is a proven path to success in explaining risk premium puzzles:
 The risk premium might be puzzlingly large, but it is no more puzzling than the puzzle in the other market.

■ I admire their ambition and effort:
 ◆ From firm value dynamics to stock index options involves many convoluted steps that need intelligence, patience, and hard work.

■ For future research, a lot more can be done on building the linkages.
 ◆ There does not exist a dichotomy between structural models and reduced-form models.
 ◆ Where to start (firm, debt, equity) depends on the objective of the paper...