Leverage Effect, Volatility Feedback, and Self-Exciting Market Disruptions
Disentangling the Multi-dimensional Variations in S&P 500 Index Options

Liuren Wu at Baruch College
Joint work with Peter Carr at Bloomberg

Rutgers University, February 20, 2009
Co-movements between stock index and index volatilities

Equity index and volatilities show negative co-movements.

- Mechanisms that can generate such co-movements:
 - Add negative instantaneous correlation between innovations in index return and return variance, e.g., Heston (1993).
 - Scale-free dynamics: Changing the units/scale of the index does not change the dynamics.
 - Model the volatility as a function of the index level.
 - The local volatility model of Dupire (1994):
 \[
 dS_t = (r - q)S_t \, dt + \sigma(S_t, t) \, dW.
 \]
 - The constant elasticity of variance: \(\sigma(S_t, t) = \delta S_t^{1-p}, \ p > 0. \)
 - Scaling the price level alters the dynamics.

- Evidence:
 - Derman (1999): Data show different regimes, under which the implied volatility and the equity index show different dependence structures.
Index and index volatility interacts through at least three distinct channels:

1. **The leverage effect**: With business risk fixed, an increase in financial leverage level leads to an increase in equity volatility level.
 - A financial leverage increase can come from stock price decline while the debt level is fixed — Black (76)'s classic leverage story.
 - It can also come from active leverage management.

2. **The volatility feedback effect** on asset valuation:
 - A positive shock to business risk increases the discounting of future cash flows, and reduces the asset value, regardless of the level of financial leverage.

3. **The self-exciting behavior** of market disruptions:
 - A downside jump in the index leads to an upside spike in the chances of having more of the same.
An overview of what we do

- We propose a model for the stock index dynamics that captures all three channels of interactions,
 - by modeling the dynamics of the asset value and the dynamics of the financial leverage separately.

- We propose a tractable way of pricing options under the specified dynamics.

- We estimate the model on 12 years of S&P 500 index options.
 - and compare its performance with that of the state-of-the-art reduced-form benchmark.

- We explore the implications of the different interaction channels on the variation of the implied volatility surface.
The model

- Decompose the forward value of the equity index F_t into a product of the asset value A_t and the equity-to-asset ratio X_t,

$$F_t = A_t X_t.$$ ⇐ This is just a tautology,

- *Separately* model the dynamics of leverage X_t and asset value A_t.
 - Model X_t as a CEV process: $dX_t/X_t = \delta X_t^{-p} dW_t$, $p > 0$.
 - Leverage effect: A decline in X reduces equity value, increases leverage, and raises equity volatility.
 - Model the asset value A_t as an exponential martingale,
 $$
 \frac{dA_t}{A_t} = \sqrt{v_t} dZ_t + \int_0^\infty (e^x - 1) \left(\mu^+(dx, dt) - \pi_{J^+}(x) dx \nu_t^J dt \right)
 + \int_{-\infty}^0 (e^x - 1) \left(\mu^-(dx, dt) - \pi_{J^-}(x) dx \nu_t^J dt \right),
 $$
 $$
 dv_t^Z = \kappa_Z \left(\theta_Z - v_t^Z \right) dt + \sigma_Z \sqrt{v_t} dZ_t^\nu, \quad \mathbb{E}[dZ_t^\nu dZ_t] = \rho dt,
 $$
 $$
 dv_t^J = \kappa_J \left(\theta_J - v_t^J \right) dt - \sigma_J \int_{-\infty}^0 \chi (\mu^-(dx, dt) - \pi_{J^-}(x) dx \nu_t^J dt).
 $$
 - Volatility feedback — $\rho < 0$.
 - Self-exciting crashes — Negative jumps in asset return are associated with positive jumps in the arrival rate of jumps ν_t^J.
 - VG jumps: $\pi_{J^+}(x) = e^{-x/\nu_{J^+}} x^{-1}$, $\pi_{J^-}(x) = e^{-|x|/\nu_{J^-}} |x|^{-1}$.

Peter Carr & Liuren Wu
Leverage Effect, Volatility Feedback, & Self-Exciting Disruptions
Why separately model asset value and leverage?

- Financial leverages may not increase when stock prices are down.
- Firms actively manage their leverages (Adrian & Shin (2008)):
 - Commercial banks try to keep their leverage constant.
 - Investment banks take larger leverages during booming periods and de-lever during recessions.
- The traditional leverage story (on the negative relation between stock returns and volatilities) work better for households (and to a lesser degree manufacturing companies) with passive capital structure managements.
 - By setting $X = 1$, and $F_t = A_t$, we generate a reduced-form benchmark that supercedes all the above:

$$
\frac{dF_t}{F_t} = \sqrt{v_t^Z} dZ_t + \int_0^\infty (e^x - 1) \left(\mu^+ (dx, dt) - \pi_{J+} (x) d\nu_t^J dt \right) + \int_{-\infty}^0 (e^x - 1) \left(\mu^- (dx, dt) - \pi_{J-} (x) d\nu_t^J dt \right).
$$
The equity index dynamics with index level dependence

- The equity index dynamics:

\[\frac{dF_t}{F_t} = \delta \left(\frac{F_t}{A_t} \right)^{-p} dW_t + \sqrt{v_t^Z} dZ_t + \int_{\mathbb{R}_0} (e^x - 1) \left(\mu(dx, dt) - \pi J(x) d\nu_t^d \right) dt. \]

- The index return variance depends on the index level.
- With \(p > 0 \), the return variance increases with declining index level.
- Scaling \(F_t \) by \(A_t \) (both in dollars) makes the return variance a unitless quantity,
- and renders the dynamics \textit{scale free} and stable in the presence of splits or trends.
 - We cannot expect the long-run index level to be stable, but we can expect the level of financial leverage to be stationary.

- In addition to the level dependence, \((A_t, v_t^Z, \nu_t^d)\) add separate variations to the index return variance.
The equity index dynamics \textit{without} index level dependence

- An alternative representation:
 \[
 \frac{dF_t}{F_t} = \delta X_t^{-p} dW_t + \sqrt{\nu_t^Z} dZ_t + \int_{\mathbb{R}_0} \left(e^x - 1\right) \left(\mu(dx, dt) - \pi_J(x) dv^J_t \, dt\right).
 \]

- Index return variance is driven by three state variables \((X_t, \nu_t^Z, \nu_t^J)\), with \textit{no additional index level dependence}.

- Let \(\nu_t^X = \delta^2 X_t^{-2p}\), we obtain a three-factor stochastic volatility model:
 \[
 \frac{dF_t}{F_t} = \sqrt{\nu_t^X} dW_t + \sqrt{\nu_t^Z} dZ_t + \int_{\mathbb{R}_0} \left(e^x - 1\right) \left(\mu(dx, dt) - \pi_J(x) dv^J_t \, dt\right).
 \]
 where
 \[
 d\nu_t^X = \kappa_X (\nu_t^X)^2 dt - \sigma_X (\nu_t^X)^{3/2} dW_t, \quad \text{a 3/2-process.}
 \]
 with \(\kappa_X = p(2p + 1)\) and \(\sigma_X = 2p\). Henceforth, normalize \(\delta = 1\).

- The model can be represented either as a local vol model with index level dependence or a pure stochastic volatility model with no index level dependence — unifying the two strands of literature.
Consider the forward value of a European call option:

\[
c(F_t, K, T) = \mathbb{E}_t \left[(F_T - K)^+ \right] = \mathbb{E}_t \left[\mathbb{E}_t \left[(\mathcal{X} A_T - K)^+ \mid X_T = \mathcal{X} \right] \mid X_t \right] = \mathbb{E}_t \left[\mathcal{X} \cdot C(A_t, K / \mathcal{X}, T) \mid X_t \right]
\]

where \(C(A_t, K, T) \equiv \mathbb{E} [(A_T - K)^+] \) is the forward call value on asset.

Option valuation follows a two-step procedure:

1. Derive the Fourier transform of the asset return. Apply fast Fourier inversion (FFT) to compute the call value on asset \(C \). — Order \(N \ln(N) \) computation.

2. Integrate the call value \(\mathcal{X} C \) over the known density of \(X_T = \mathcal{X} \) conditional on \(X_t \):

\[
f(X_T = \mathcal{X}, X_t) = \frac{\mathcal{X}^{2p} - \frac{3}{2} X_t^{2p}}{p(T-t)} \exp \left(- \frac{X_t^{2p} + \mathcal{X}^{2p}}{2p^2(T-t)} \right) I_v \left(\frac{X_t p^{2p} \mathcal{X}^{2p}}{p^2(T-t)} \right), \quad v = \frac{1}{2p}
\]

— Quadrature method.
Market prices of risks and statistical dynamics

- The specifications so far are on the risk-neutral dynamics:
 - The forward index level, forward asset value, and leverage ratio X_t are all martingales under Q.
- Their deviations from the P dynamics reflect the market prices of risks.
- We postulate that managerial decisions on financial leverage depend on risk levels:

$$dX_t = X_t^{1-p} \left(a_X - \kappa_{XX} X_t - \kappa_{XZ} \nu_t^Z - \kappa_{XJ} \nu_t^J \right) dt + X_t^{1-p} dW_t^P.$$

Market price of W_t risk is $\gamma_t^X = a_X - \kappa_{XX} X_t - \kappa_{XZ} \nu_t^Z - \kappa_{XJ} \nu_t^J$.

- κ_{XX}: Mean reversion, leverage level targeting.
- κ_{XZ}: How leverage responds to diffusion business risk.
- κ_{XJ}: How leverage responds to jump business risk.

- Constant market prices on diffusion variance risk (γ^ν) and jump risk (γ^J).
Data analysis

- 40 time series on a grid of
 - 5 relative strikes: 80, 90, 100, 110, 120% of spot.
 - 8 fixed time to maturities: 1m, 3m, 6m, 1y, 2y, 3y, 4y, 5y.

- Listed market focuses on short-term options (within 3 years). OTC market is very active on long-dated options.

 - At one maturity, an implied volatility smile/skew can be generated by many different mechanisms: jumps, leverage, volatility feedback, self-exciting crashes...

 - To distinguish the different roles played by the different mechanisms, we need to look at how these smiles/skews evolve over a wide range of maturities.
Implied volatilities show a negatively sloped skew along strike.

The skew slope becomes flatter as maturity increases due to scaling: 80% strike at 5-yr maturity is not nearly as out of money as 80% strike at 1-month maturity.

When measured against a standardized moneyness measure $d = \ln(K/100)/(IV\sqrt{\tau})$, the skew defined as,

$$SK_{t,T} = \frac{IV_{t,T}(80\%) - IV_{t,T}(120\%)}{|d_{t,T}(80\%) - d_{t,T}(120\%)|},$$

does not flatten as maturity increases.
3 PCs explain 96.6% of variation: 85.1%, 8.2%, 3.3%.

- The 1st PC (blue solid line) — the average volatility level variation.
- The 2nd PC (green dashed) — the variation in the term structure.
- The 3rd PC (red dash-dotted) — the variation along strike.

The ranking of the 2nd & 3rd PCs can switch for listed options data as the listed market has more quotes along strikes than maturities.
Principal component loadings on the implied vol surface

Factor loading on P2

Factor loading on P3

Maturity, years
Relative strike, %
Model estimation, with dynamic consistency

- The model has 10 parameters \((p, \kappa_Z, \theta_Z, \sigma_Z, \rho, \kappa_J, \theta_J, \sigma_J, v_{J+}, v_{J-})\) and three hidden state variables \((X_t, \nu^Z_t, \nu^J_t)\) to price 40 options each date.
- The PCA suggests that the majority of the implied volatility surface variation can be captured by three properly placed components.
- We fix the model parameters over time and use the 3 state variables to capture the variation of the \(5 \times 8\) implied volatility surface.
- We cast the model into a state-space form:
 - Let \(V_t \equiv [X_t, \nu^Z_t, \nu^J_t]\) be the state. State propagation equation:
 \[
 V_t = f(V_{t-1}; \Theta) + \sqrt{Q_{t-1}} \varepsilon_t.
 \]
 — 6 additional parameters \((a, \kappa_{XX}, \kappa_{XZ}, \kappa_{XJ}, \gamma^v, \gamma^J)\).
 - Let the 40 option series be the observation. Measurement equation:
 \[
 y_t = h(V_t; \Theta) + \sqrt{R} e_t, \quad (40 \times 1)
 \]
 - \(y\): OTM option prices scaled by the BS vega of the option.
 - Assume that the pricing errors on the scaled option series are iid.
Pricing performance: Root mean squared error

<table>
<thead>
<tr>
<th>\mathcal{K}/τ</th>
<th>1</th>
<th>3</th>
<th>6</th>
<th>12</th>
<th>24</th>
<th>36</th>
<th>48</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced-form benchmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>3.904</td>
<td>2.155</td>
<td>1.515</td>
<td>1.301</td>
<td>1.131</td>
<td>0.902</td>
<td>0.908</td>
<td>1.181</td>
</tr>
<tr>
<td>90</td>
<td>2.252</td>
<td>1.112</td>
<td>0.852</td>
<td>0.810</td>
<td>0.708</td>
<td>0.591</td>
<td>0.711</td>
<td>1.056</td>
</tr>
<tr>
<td>100</td>
<td>1.290</td>
<td>0.601</td>
<td>0.641</td>
<td>0.678</td>
<td>0.528</td>
<td>0.425</td>
<td>0.592</td>
<td>0.966</td>
</tr>
<tr>
<td>110</td>
<td>2.486</td>
<td>0.982</td>
<td>1.067</td>
<td>1.025</td>
<td>0.711</td>
<td>0.488</td>
<td>0.554</td>
<td>0.901</td>
</tr>
<tr>
<td>120</td>
<td>3.836</td>
<td>1.488</td>
<td>1.299</td>
<td>1.327</td>
<td>1.014</td>
<td>0.663</td>
<td>0.583</td>
<td>0.856</td>
</tr>
<tr>
<td>Full model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>2.216</td>
<td>1.103</td>
<td>1.050</td>
<td>0.836</td>
<td>0.607</td>
<td>0.550</td>
<td>0.770</td>
<td>1.064</td>
</tr>
<tr>
<td>90</td>
<td>1.225</td>
<td>0.727</td>
<td>0.701</td>
<td>0.641</td>
<td>0.445</td>
<td>0.279</td>
<td>0.445</td>
<td>0.758</td>
</tr>
<tr>
<td>100</td>
<td>1.111</td>
<td>0.409</td>
<td>0.474</td>
<td>0.555</td>
<td>0.418</td>
<td>0.286</td>
<td>0.377</td>
<td>0.657</td>
</tr>
<tr>
<td>110</td>
<td>1.499</td>
<td>0.720</td>
<td>0.720</td>
<td>0.717</td>
<td>0.551</td>
<td>0.436</td>
<td>0.465</td>
<td>0.674</td>
</tr>
<tr>
<td>120</td>
<td>4.014</td>
<td>1.081</td>
<td>1.057</td>
<td>0.984</td>
<td>0.714</td>
<td>0.561</td>
<td>0.572</td>
<td>0.735</td>
</tr>
</tbody>
</table>

Average rmse (in vol points) is 1.187 for benchmark and 0.83 for full model.
Pricing performance: Explained variation

<table>
<thead>
<tr>
<th>K/τ</th>
<th>1</th>
<th>3</th>
<th>6</th>
<th>12</th>
<th>24</th>
<th>36</th>
<th>48</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced-form benchmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>0.672</td>
<td>0.904</td>
<td>0.919</td>
<td>0.932</td>
<td>0.948</td>
<td>0.960</td>
<td>0.954</td>
<td>0.931</td>
</tr>
<tr>
<td>90</td>
<td>0.869</td>
<td>0.962</td>
<td>0.972</td>
<td>0.975</td>
<td>0.981</td>
<td>0.982</td>
<td>0.973</td>
<td>0.951</td>
</tr>
<tr>
<td>100</td>
<td>0.957</td>
<td>0.988</td>
<td>0.983</td>
<td>0.981</td>
<td>0.990</td>
<td>0.991</td>
<td>0.981</td>
<td>0.962</td>
</tr>
<tr>
<td>110</td>
<td>0.795</td>
<td>0.966</td>
<td>0.949</td>
<td>0.949</td>
<td>0.978</td>
<td>0.988</td>
<td>0.983</td>
<td>0.968</td>
</tr>
<tr>
<td>120</td>
<td>0.289</td>
<td>0.878</td>
<td>0.907</td>
<td>0.904</td>
<td>0.947</td>
<td>0.976</td>
<td>0.980</td>
<td>0.969</td>
</tr>
<tr>
<td>Average</td>
<td>0.717</td>
<td>0.940</td>
<td>0.946</td>
<td>0.948</td>
<td>0.969</td>
<td>0.979</td>
<td>0.974</td>
<td>0.956</td>
</tr>
<tr>
<td>Full model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>0.897</td>
<td>0.972</td>
<td>0.961</td>
<td>0.970</td>
<td>0.983</td>
<td>0.987</td>
<td>0.971</td>
<td>0.936</td>
</tr>
<tr>
<td>90</td>
<td>0.965</td>
<td>0.985</td>
<td>0.982</td>
<td>0.982</td>
<td>0.990</td>
<td>0.996</td>
<td>0.989</td>
<td>0.965</td>
</tr>
<tr>
<td>100</td>
<td>0.968</td>
<td>0.994</td>
<td>0.991</td>
<td>0.986</td>
<td>0.991</td>
<td>0.996</td>
<td>0.992</td>
<td>0.977</td>
</tr>
<tr>
<td>110</td>
<td>0.930</td>
<td>0.979</td>
<td>0.977</td>
<td>0.974</td>
<td>0.984</td>
<td>0.989</td>
<td>0.989</td>
<td>0.978</td>
</tr>
<tr>
<td>120</td>
<td>0.293</td>
<td>0.938</td>
<td>0.939</td>
<td>0.945</td>
<td>0.971</td>
<td>0.981</td>
<td>0.981</td>
<td>0.973</td>
</tr>
<tr>
<td>Average</td>
<td>0.810</td>
<td>0.974</td>
<td>0.970</td>
<td>0.971</td>
<td>0.984</td>
<td>0.990</td>
<td>0.984</td>
<td>0.966</td>
</tr>
</tbody>
</table>

Likelihood: 38,265 for benchmark and 46,651 for full model.
Relative variance and skew contributions

<table>
<thead>
<tr>
<th>Θ</th>
<th>Estimates</th>
<th>Std Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>2.8427</td>
<td>0.0074</td>
</tr>
<tr>
<td>ρ</td>
<td>-0.8354</td>
<td>0.0016</td>
</tr>
<tr>
<td>σ_J</td>
<td>5.6355</td>
<td>0.0272</td>
</tr>
<tr>
<td>ν_J^+</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>ν_J^-</td>
<td>0.1926</td>
<td>0.0002</td>
</tr>
</tbody>
</table>

- Average instantaneous return variance (volatility) contributions from (X_t, ν_t^Z, ν_t^J):
 - $E^P[X_t^{-2\rho}] = 0.0119(10.91\%)$,
 - $E^P[\nu_t^Z] = 0.0231(15.19\%)$,
 - $E^P[(\nu_{J+}^2 + \nu_{J-}^2)\nu_t^J] = 0.0116(10.79\%)$.

- All three types of interactions are strong: Leverage effect ($\rho = 2.8427$), volatility feedback ($\rho = -0.8354$), and self-excitement ($\sigma_J = 5.6355$).

- Much larger downside jumps than upside jumps ($\nu_{J-} \geq \nu_{J+}$).
Different term structure effects

<table>
<thead>
<tr>
<th>Θ</th>
<th>Estimates</th>
<th>Std Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>2.8427</td>
<td>0.0074</td>
</tr>
<tr>
<td>κ_Z</td>
<td>3.0114</td>
<td>0.0127</td>
</tr>
<tr>
<td>κ_J</td>
<td>0.0009</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Different risk-neutral dynamics \Rightarrow different term structure responses:

- v_t^X: Mean-repelling (drift $= p(2p + 1)(v_t^X)^2 dt$)
 \Rightarrow Responses to shocks become larger at longer maturities.

- v_t^Z: Strong mean reversion ($\kappa_Z = 3.0114$)
 \Rightarrow Responses decline quickly as option maturity increases.

- v_t^J: Slow mean reversion ($\kappa_J = 0.0009$)
 \Rightarrow Responses do not decline.
The term structure of at-the-money implied volatility

- Solid lines: Evaluated at the sample average of \((X_t, v^Z_t, v^J_t)\).
- Dashed lines: Evaluated at 90th-percentile for one state variable.
- Dashed lines: Evaluated at 10th-percentile for one state variable.
Multiple sources of implied volatility skew

Our model embeds 4 mechanisms in generating the implied volatility skew: (1) leverage effect \((p > 0)\), (2) volatility feedback \((\rho < 0)\), (3) crash risk \((v_{J^-} \gg v_{J^+})\), (4) self-excitement of crash events \((\sigma_J)\).

\[
SK_{t,T} = \frac{(IV_{t,T}(80\%) - IV_{t,T}(120\%))}{|d_{t,T}(80\%) - d_{t,T}(120\%)|}
\]

Peter Carr & Liuren Wu Leverage Effect, Volatility Feedback, & Self-Exciting Disruptions
The capital structure decision

\[dX_t = X_t^{1-p} (a_X - \kappa_{XX} X_t - \kappa_{XZ} \nu^Z_t - \kappa_{XJ} \nu^J_t) \, dt + X_t^{1-p} dW_t^P \]

<table>
<thead>
<tr>
<th>(\Theta)</th>
<th>Estimates</th>
<th>Std Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_X)</td>
<td>0.0003</td>
<td>0.0000</td>
</tr>
<tr>
<td>(\kappa_{XX})</td>
<td>0.0001</td>
<td>0.0000</td>
</tr>
<tr>
<td>(\kappa_{XZ})</td>
<td>17.5360</td>
<td>0.3087</td>
</tr>
<tr>
<td>(\kappa_{XJ})</td>
<td>-0.0774</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

- \(\kappa_{XX} = 0.0001 \): Capital structure is very persistent.
- \(\kappa_{XZ} = 17.536 \): High \textit{diffusion} business risk reduces \(X_t \) and hence \textit{increases} the financial leverage.
- \(\kappa_{XJ} = -0.0774 \): High \textit{jump} business risk increases \(X_t \) and hence \textit{reduces} the financial leverage.

Potentially better stories on different types on individual companies ...
Market prices of risks

<table>
<thead>
<tr>
<th>Θ</th>
<th>Estimates</th>
<th>Std Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ^v</td>
<td>-17.4507</td>
<td>0.3048</td>
</tr>
<tr>
<td>γ^J</td>
<td>0.4468</td>
<td>0.0023</td>
</tr>
</tbody>
</table>

- (i) Market price of diffusion variance risk (γ^v) is highly negative \Rightarrow Negative variance risk premium.
- Market price of return jump risk (γ^J) is positive:
 - Risk-neutral return innovation distribution is more *negatively* skewed than the statistical distribution:
 $v_{J+}^P = v_{J+} / (1 - \gamma^J v_{J+}) > v_{J+}$,
 $v_{J-}^P = v_{J-} / (1 + \gamma^J v_{J-}) < v_{J-}$.
 - (ii) Instantaneous variance contribution from jumps is larger under the risk-neutral measure than under the statistical measure:
 $(v_{J+}^2 + v_{J-}^2)v_t^J > ((v_{J+}^P)^2 + (v_{J-}^P)^2)v_t^J$.
 - (iii) Negative risk premium on the jump arrival rate (v_t^J):
 $\sigma_J(v_{J-}^P - v_{J-})v_t^J < 0$.
- (i), (ii), & (iii) \Rightarrow Negative index return variance risk premium.

Peter Carr & Liuren Wu
Leverage Effect, Volatility Feedback, & Self-Exciting Disruptions
Time series of the extracted states

- The risk contribution from financial leverage (v_t^X) reached historical highs before the burst of the Nasdaq bubble.
- The diffusion variance risk (v_t^Z) peaked during the 2003 recession.
- The jump risk (v_t^J) spiked during the LTCM crisis.
Equity return and volatility interact through several distinct channels.

It is helpful to separately model the variations of the financial leverage and the business risk to bridge the gaps in the literature, to disentangle the different mechanisms of interactions, and to generate good pricing performance on equity options over both short and long option maturities.

The approach has potentials in analyzing single name stocks options. Link the different capital structure management styles to the different behaviors of the implied volatility surface.