Chapter 5
Risk and Return – Part III

Asset Allocation

- How to allocate your fund among the following asset classes?

Investment Funds

- Stock
- Bond
- T-Bills

Risky Assets
Riskfree Asset
Portfolio Weight

- Portfolio weight for an asset is the proportion of that asset in your total investment
- Example: If your portfolio consists of 100 shares of IBM at $90/share and 10 shares of 30-year treasury at $1100/share, what is your portfolio weights in IBM and 30-year bond?

Asset Allocation between One Risky and One Riskfree Asset

- Risky asset: a stock, a long-term bond, or a portfolio of stocks and long-term bonds (p)
- Riskfree asset: T-bill as proxy (f)
- Risk and expected return of the combined portfolio (c) with weight w in risky asset:

 Mean: $E[r_c] = (1-w)r_f + wE[r_p] = r_f + w(E[r_p] - r_f)$

 Variance: $\sigma_c^2 = w^2\sigma_p^2$

 Std Dev: $\sigma_c = |w|\sigma_p$
An Example

- Risk and expected return of two assets
 - Assets: Mean, Std Dev, Weight
 - Risky: $E[r_p] = 15\%$, $\sigma_p = 22\%$, w
 - Riskfree: $r_f = 7\%$, $\sigma_f = 0\%$, $1 - w$

- What is the expected return of the combined portfolio if:
 - $w = 0.00$; $w = 0.50$; $w = 1.00$
 - What is the volatility risk you have to bear to achieve an expected return of 9%?
 - What is the maximum expected return if you wish to limit your portfolio volatility to 16.5%?

Capital Allocation Line

![Capital Allocation Line Graph]

- $E[r_p] = 15\%$
- $r_f = 7\%$
- $\sigma_p = 22\%$
Capital Allocation Line

- Can \(w > 1 \), what does that mean?
 - Find the \(E[r_c] \) and \(SD[r_c] \) with \(w = 2.0 \)
 - Mean: \(E[r_c] = 0.07 + 0.08w = 0.23 = 23\% \)
 - Std Dev: \(\sigma_c = 0.22w = 0.44 = 44\% \)

- Leverage
 - Investing 200\% of wealth in risky asset
 - Using margin borrowing
 - Initial margin and maintenance margin
 - Higher *expected* return than the risky asset
 - Higher volatility accompanies higher expected return

Buying on Margin (Details in CH3)

- Definition of margin:
 - Net Equity / Total Market Value of Stocks
- When the account is first opened, the investor needs to satisfy *initial* margin
- The investor needs to satisfy a *maintenance* margin all the time
 - Will receive a margin call if margin falls below maintenance margin requirement
 - Can sell stocks or contribute additional collateral upon margin call
Capital Allocation Line

- **Sharpe Ratio (reward-to-variability ratio)**

\[
S = \frac{E[r_p] - r_f}{\sigma_p}
\]

Where:
- \(E[r_p]\) is the expected return of the portfolio.
- \(r_f\) is the risk-free rate.
- \(\sigma_p\) is the standard deviation of the portfolio.

\[
\sigma_p = 22\%
\]

Example:
- \(E[r_p] = 15\%\)
- \(r_f = 7\%\)
- \(\sigma_p = 22\%\)

\[
S = \frac{15\% - 7\%}{22\%} = 0.36
\]

Risk Aversion and Asset Allocation

- Greater risk aversion leads to higher allocation to risk-free asset.
- Lower risk aversion leads to greater allocation to risky asset.
- Willingness to accept extremely high risk for higher return may lead to leveraged position.

- Can \(w < 0\), i.e. weight on stocks less than zero percent? How to implement that in practice?
Indifference Curve and Risk Aversion

\[E[r_p] \]

\[\sigma_p \]

Indifference curve

CAL

Y

X

Capital Market Line

- **CAL** is called Capital Market Line (CML) if
 - The risky asset is a broad index of common stocks
- **CML** is the investment opportunity set based on a passive strategy
 - based on the belief that securities are fairly priced (market efficiency)
 - Avoids costs in security analysis
Wrap-up

- Definition of risk premium and risk aversion
- Expected return and standard deviation with one risky and one riskfree security
- What is Capital Allocation Line (CAL) and Capital Market Line (CML)?
- What is Sharpe Ratio?
- How does risk aversion affect asset allocation?