Chapter 6
Efficient Diversification

Diversification and Portfolio Risk

- Don’t put all your eggs in one basket
- Effect of portfolio diversification

![Risk vs. Number of Securities](image_url)

- Diversifiable risk, non-systematic risk, firm-specific risk, idiosyncratic risk
- Non-diversifiable risk, systematic risk, market risk, covariance risk
Diversification and Portfolio Risk

- **Covariance and correlation**
 - Measure degrees of co-movement between two stocks
 - Covariance: non-standardized measure
 \[
 \text{Cov}[r_1, r_2] = E[(r_1 - \mu_1)(r_2 - \mu_2)] = E[r_1 r_2] - \mu_1 \mu_2
 \]
 - Correlation coefficient: standardized measure
 \[
 \rho_{12} = \frac{\text{Cov}[r_1, r_2]}{\sigma_1 \sigma_2} \Rightarrow \text{Cov}[r_1, r_2] = \rho_{12} \sigma_1 \sigma_2 \quad \text{and} \quad -1 \leq \rho_{12} \leq 1
 \]

Example: Covariance and Correlation

- **Calculating covariance**
 \[
 \text{Cov} [r_1, r_2] = E[(r_1 - \mu_1)(r_2 - \mu_2)] = \sum_s p(s)[(r_1(s) - \mu_1)(r_2(s) - \mu_2)]
 \]
 \[
 \text{Cov} [r_1, r_2] = E[r_1 r_2] - \mu_1 \mu_2 = \sum_s p(s)[r_1(s)r_2(s)] - \mu_1 \mu_2
 \]

<table>
<thead>
<tr>
<th>s</th>
<th>p</th>
<th>r1</th>
<th>r2</th>
<th>p*r1</th>
<th>p*r2</th>
<th>p*[r1-mu1]*2</th>
<th>p*[r2-mu2]*2</th>
<th>p*[r1r2-mu1mu2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bust</td>
<td>0.30</td>
<td>-11.00</td>
<td>16.00</td>
<td>-3.30</td>
<td>4.80</td>
<td>132.30</td>
<td>30.00</td>
<td>-70.80</td>
</tr>
<tr>
<td>normal</td>
<td>0.40</td>
<td>13.00</td>
<td>6.00</td>
<td>5.20</td>
<td>2.40</td>
<td>3.60</td>
<td>0.00</td>
<td>7.20</td>
</tr>
<tr>
<td>Boom</td>
<td>0.30</td>
<td>27.00</td>
<td>-4.00</td>
<td>8.10</td>
<td>-1.20</td>
<td>86.70</td>
<td>30.00</td>
<td>-50.40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>s</th>
<th>p</th>
<th>r1</th>
<th>r2</th>
<th>p*r1</th>
<th>p*r2</th>
<th>p*[r1-mu1]*2</th>
<th>p*[r2-mu2]*2</th>
<th>p*[r1r2-mu1mu2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.00</td>
<td>6.00</td>
<td>222.60</td>
<td>60.00</td>
<td>-14.92</td>
<td>7.75</td>
<td>-0.99</td>
<td>-39.60</td>
<td></td>
</tr>
</tbody>
</table>

3/29/2006 FIN3710 - Investment - Professor Rui Yao
Diversification and Portfolio Risk

- A portfolio of two risky assets

 portfolio return: \(r_p = w_1 r_1 + w_2 r_2 \) with \(w_1 + w_2 = 1 \)

 - \(w_1 \): % invested in risky bond fund
 - \(w_2 \): % invested in risky stock fund

- Portfolio expected return

 \[\mu_p = E[r_p] = w_1 E[r_1] + w_2 E[r_2] = w_1 \mu_1 + w_2 \mu_2 \]

- Portfolio variance

 \[\sigma_p^2 = Var[r_p] = E[(r_p - \mu_p)(r_p - \mu_p)] \]

 \[= w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2w_1w_2 \rho_{12} \sigma_1 \sigma_2 \]

More on Portfolio Variance

- What if one of the two security is risk-free?

- What happens if two risky securities are perfectly correlated with

 - \(\rho_{12} = 1 \)
 - No risk reduction

- What happens if two risky securities are perfectly correlated with

 - \(\rho_{12} = -1 \)
Diversification and Portfolio Risk

- Example: Portfolio of two risk securities
 - w in security 1, $(1-w)$ in security 2
 - $\mu_1 = 0.10$, $\sigma_1 = 0.15$
 - $\mu_2 = 0.14$, $\sigma_2 = 0.20$, $\rho_{12} = 0.2$

- Expected return (Mean):
 - $\mu_p = 0.10 \times w + 0.14 \times (1-w) = 0.14 - 0.04 \times w$

- Variance
 - $\sigma_p^2 = 0.15^2 w^2 + 0.20^2 (1-w)^2 + 2 \times 0.2 \times 0.15 \times 0.20 \times (1-w)$

- What happens when w changes?
 - Expected return ↑ as weight in 1 ↓
 - What about variance … first ↓, then ↑

Mean-variance Frontier

- w moves from 1 → 0

<table>
<thead>
<tr>
<th>w</th>
<th>1-w</th>
<th>$E(rp)$</th>
<th>$Var(rp)$</th>
<th>std dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>0.00</td>
<td>0.100</td>
<td>0.02250</td>
<td>0.150</td>
</tr>
<tr>
<td>0.80</td>
<td>0.20</td>
<td>0.108</td>
<td>0.01792</td>
<td>0.134</td>
</tr>
<tr>
<td>0.60</td>
<td>0.40</td>
<td>0.116</td>
<td>0.01738</td>
<td>0.132</td>
</tr>
<tr>
<td>0.40</td>
<td>0.60</td>
<td>0.124</td>
<td>0.02088</td>
<td>0.144</td>
</tr>
<tr>
<td>0.20</td>
<td>0.80</td>
<td>0.132</td>
<td>0.02842</td>
<td>0.169</td>
</tr>
<tr>
<td>0.00</td>
<td>1.00</td>
<td>0.140</td>
<td>0.04000</td>
<td>0.200</td>
</tr>
</tbody>
</table>

GMVP: Global Minimum Variance Portfolio
Efficient Portfolio Frontier

- What’s special about a portfolio with 67% in Security 1 and 33% in Security 2?
- Efficient portfolio has < 67% in 1, and > 33% in 2

The effect of correlation
- Lower correlation means greater risk reduction
- If $\rho = +1.0$, no risk reduction is possible
Efficient Portfolio Frontier

- Efficient portfolio of many securities
 - $E[r_p]$ is the weighted average of N securities
 - σ_p^2 is the sum of all weighted pair-wise covariance measures
 - Covariance with a security itself is variance
- Optimal combination leads to
 - Lowest risk for a given level of expected return
 - Highest expected return at a given risk level
- Efficient frontier describes the optimal risk-return trade-off
 - Portfolios not on efficient frontier are dominated

Efficient Frontier

- Efficient frontier
- Global minimum variance portfolio
- Minimum variance frontier
- Individual assets
- St. Dev.

3/29/2006 FIN3710 - Investment - Professor Rui Yao
Efficient Frontier with A Riskfree Asset

- With risky assets only
 - No portfolio with zero variance (if no two securities are perfectly correlated)
 - GMVP has the lowest variance
- With an additional riskfree asset
 - Can reduce risk further without sacrificing expected return
 - Zero variance if investing in riskfree asset only
 - How will the efficient frontier change?
Efficient Frontier with A Riskfree Asset

- CAL(O) dominates other lines
 - Best risk and return trade-off
 - Steepest slop (highest Sharpe ratio)

\[S_p = \frac{E[r_p] - r_f}{\sigma_p} > \frac{E[r_s] - r_f}{\sigma_s} \]

- Portfolios along CAL(O) has the same Sharpe ratio
- No portfolio with higher Sharpe ratio is achievable
- Dominance independent of risk preference

Optimal CAL

- What’s so special about portfolio (O)?
 - The optimal portfolio is the market portfolio
 - Mutual fund theorem: An index mutual fund (market portfolio) and T-bills are sufficient for investors
 - Investors adjust the holding of index fund and T-bills according to their risk preferences
 - Where CML meets the indifference curve
Portfolio Selection and Risk Aversion

\[E[R_p] \quad \sigma_p \]

Indifference curve

CML

Mean-Variance Frontier

Two Step Portfolio Allocation

- **Step 1:** Determine the optimal risky portfolio
 - Get the optimal mix of risky stocks and bonds.
 - Optimal for all investors regardless of risk aversion

- **Step 2:** Determine the best complete portfolio
 - Obtain the best mix of the optimal risky portfolio and T-Bills.
 - Different investors may have different best complete portfolios
 - Depend on risk aversion.
Wrap-up

- How to calculate portfolio return and risk?
- How to calculate covariance and correlation coefficient based on scenario analysis
- How to calculate covariance based on portfolio weights
- What is the mean-variance frontier with risky assets with different correlations between risky assets?
- What is the efficient portfolio frontier
 - with risky assets
 - With both risky assets and riskfree asset
- Why do portfolios on the efficient frontier dominate other possible combinations?