Debt Classes: Payment Type

- A security obligating issuer to pay interests and principal to the holder on specified dates,
 - Coupon rate or interest rate, e.g. 4%, 5 3/4%, etc.
 - Face, par value or principal payment, e.g. $1000
 - Maturity, e.g. 3 month, 1 year, 30 year, etc.

- Bond can be classified according to its attributes
 - Payment type, e.g. semi-annual coupon
 - Issuer, e.g. government, agency, corporate, etc.
 - Maturity, e.g. short, medium, long, etc.
 - Security, e.g. secured, unsecured, etc.
Debt Classes: Payment Type

- Pure discount bond or zero-coupon bond
 - No coupon payments prior to maturity
 - Bond’s face value paid at maturity
- Coupon bond
 - A stated coupon paid periodically prior to maturity
 - Bond’s face value paid at maturity
- Perpetual (Consol) bond
 - A stated coupon paid at periodic intervals forever
- Self-amortizing bond
 - Certain amount of principal paid at each period
 - No balloon payment at maturity

Debt Classes: Issuers

- End of Q2:2003

![Outstanding Bond Market Debt](chart.png)

- Corporate: $4.5 T
- Treasury: $3.4 T
- Agency: $2.9 T
- Money Market: $2.5 T
- Asset-backed: $1.6 T
- Municipal: $1.0 T
- Mortgage-Related: $0.7 T

Total: $21.1 Trillion

*As of June 30, 2003

**Source: Federal Reserve Board
***Figures may include bond in market

2/1/2006 FIN 3710 - Investments - Professor Rui Yao
Debt Classes: Corporate Bonds

- **Credit Rating**

<table>
<thead>
<tr>
<th>Moody</th>
<th>S&P</th>
<th>Quality of Issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aaa</td>
<td>AAA</td>
<td>Highest quality. Very small risk of default.</td>
</tr>
<tr>
<td>Aa</td>
<td>AA</td>
<td>High quality. Small risk of default.</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>High-Medium quality. Strong attributes, but potentially vulnerable.</td>
</tr>
<tr>
<td>Baa</td>
<td>BBB</td>
<td>Medium quality. Currently adequate, but potentially unreliable.</td>
</tr>
<tr>
<td>Ba</td>
<td>BB</td>
<td>Some speculative element. Long-run prospects questionable.</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>Able to pay currently, but at risk of default in the future.</td>
</tr>
<tr>
<td>Caa</td>
<td>CCC</td>
<td>Poor quality. Clear danger of default.</td>
</tr>
<tr>
<td>Ca</td>
<td>CC</td>
<td>High speculative quality. May be in default.</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>Lowest rated. Poor prospects of repayment.</td>
</tr>
<tr>
<td>D</td>
<td>-</td>
<td>In default.</td>
</tr>
</tbody>
</table>

- **Source of Risks for Bond Holders**

 - **Interest rate risk (Market risk)**
 - The major factor affecting bond prices
 - The price of bond changes in the opposite direction of interest rate change
 - All bonds are exposed to interest rate risk

 - **Inflation risk**
 - Inflation reduces purchasing power
 - Partially captured by market interest rate
 - All bonds are exposed to inflation risk, though floating-rate and inflation-indexed ones are to a lesser degree
Source of Risks

- Credit risk
 - Inability of issuer to pay coupon and/or principal
 - Corporate
 - Emerging market
 - High-yield bonds

- Liquidity risk
 - Inability to unload position without substantial costs
 - Municipal, corporate, and emerging market bond

Bond Pricing

- Discounted cash flow approach
 - Identify cash flows in coupon and principal payment
 - Apply one discount rate (market interest rate / yield-to-maturity) to discount all future cash flows

- Quoting conventions for bond coupon rates
 - APR (annual percentage rates)
 - Also called BEY (bond equivalent yields)
 - APR / # of periods per year = rate per-period

- Convert APR to EAY (effective annual yield)
 - EAY accounts for compounded interest
 - $1+EAY=(1+\text{rate per period})^n = (1+\text{APR}/n)^n$
Bond Pricing

- **Bond Value, \(P \)**

 \[
 P = \frac{C}{(1+r)} + \frac{C}{(1+r)^2} + \cdots + \frac{C}{(1+r)^T} + \frac{F}{(1+r)^T}
 \]

 \[
 = \sum_{t=1}^{T} \frac{C}{(1+r)^t} + \frac{F}{(1+r)^T} = \frac{C}{r} \left[1 - \frac{1}{(1+r)^T} \right] + \frac{F}{(1+r)^T}
 \]

 - \(C \): Coupon *per period* in dollars
 - \(r \): Interest rate (discount rate) *per period*
 - Price of a 8% semi-annual coupon 30 year T-bond?
 - When market interest rate is 8%, \(r = 4\% \), then \(P =? \)
 - When market interest rate is 10%, \(r = 5\% \), then \(P =? \)

2/1/2006 FIN 3710 - Investments - Professor Rui Yao

Bond Pricing

- **Bond price higher if**
 - Market interest rate is lower
- **Price converges to par as a bond approaches maturity if market interest rate stays constant**

<table>
<thead>
<tr>
<th>Coupon Rate = 8%</th>
<th>(F = $1,000)</th>
<th>(C = $40)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maturity</td>
<td>Market Interest Rate (APR)</td>
<td>Year</td>
</tr>
<tr>
<td>1</td>
<td>1038.83</td>
<td>1019.13</td>
</tr>
<tr>
<td>2</td>
<td>1076.15</td>
<td>1037.17</td>
</tr>
<tr>
<td>5</td>
<td>1179.65</td>
<td>1085.30</td>
</tr>
<tr>
<td>10</td>
<td>1327.03</td>
<td>1148.77</td>
</tr>
<tr>
<td>30</td>
<td>1695.22</td>
<td>1276.76</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Premium Bond</th>
<th>Par Bond</th>
<th>Discount Bond</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P > \text{par value})</td>
<td>(P = \text{par value})</td>
<td>(P < \text{par value})</td>
</tr>
</tbody>
</table>

2/1/2006 FIN 3710 - Investments - Professor Rui Yao
Bond Yield-to-Maturity

- **Yield to Maturity (YTM)**
 - The interest rate (or discount rate) that makes the PV of bond cash flow equal to its price
 - YTM is the “average” return of holding a bond to maturity
 - total return from holding the bond for one period if the market interest rate stays constant
- **YTM is different from current yield**

 \[
 \text{Current Yield} = \frac{\text{Annual coupon}}{\text{Bond market price}}
 \]
 - Current yield ignores the capital gain (loss) component of total holding period return (HPR)

Q: what is the relationship between coupon rate, current yield and ytm?

A: It depends on the type of bond

1. premium bond
 - Coupon rate > current yield > ytm
2. par bond
 - Coupon rate = current yield = ytm
3. discount bond
 - Coupon rate < current yield < ytm
YTM vs. Current Yield – An Example

Example: What’s YTM of a bond with
\[F = 1,000, \ C = 40, \ T = 60, \ P = 1,276.76 \]?

\[P = \sum_{t=1}^{T} \frac{C}{(1+r)^t} + \frac{F}{(1+r)^T} \Rightarrow 1,276.76 = \sum_{t=1}^{60} \frac{40}{(1+r)^t} + \frac{1,000}{(1+r)^{60}} \]

\[r = 3\%, \ \ r_{BEY} = 2 \times r = 6\%, \ \ r_{EAY} = (1+r)^2 - 1 = 6.09\% \]

- We refer \(r_{BEY} \) as commonly used \(YTM \)
- Notice the differences/similarities among coupon rate, market interest rate (\(YTM/APR/r_{BEY} \)), per-period discount rate \(r, r_{EAY} \), and current yield

Bond Yield-to-Call

- A callable bond gives the issuer the right to buy back a bond from the investor at a specified price after the protection period
 - Q: When will a firm call its bond?
 - Putable bond; convertible bond
- Yield-to-Call
 - The discount rate which makes the PV of cash flow up to call date equal to the current price
 - Cash flow includes coupon payment and call price
 - Often used for premium bond
An Example of Yield-to-Call

- Example: Yield-to-call for a bond with
 - 20 year maturity, 5 year call at $1,050, 9% coupon, priced at $P = 1,098.96
 \[P = \sum_{t=1}^{40} \frac{45}{(1 + 0.04)^t} + \frac{1,000}{(1 + 0.04)^{40}} \]
 - Implied YTM = 8%
 - Yield to call: \(r = 3.72\% \), \(r_{BEY} = 7.44\% \)

- Q: Which yield measure is more relevant to the bond investor?

Bond Default Risk

- Corporate bond may default
 - Lower expected cash flow / yield than promised
 - Stated YTM = maximum possible yield

- Stated YTM vs expected YTM
 - 10yr, 9% coupon, $750 price, and 70% par recovery
 - Stated YTM: \(r = 6.825\% \), \(r_{BEY} = 13.65\% \)
 \[750 = \sum_{t=1}^{20} \frac{45}{(1 + r)^t} + \frac{1,000}{(1 + r)^{20}} \]
 - Expected YTM: \(r = 5.815\% \), \(r_{BEY} = 11.63\% \)
 \[750 = \sum_{t=1}^{20} \frac{45}{(1 + r)^t} + \frac{700}{(1 + r)^{20}} \]
Municipal Bond

- Issued by state or local government
- Exempt from federal (and local) income tax

\[r_m = (1 - \tau)r \quad \text{or} \quad r = \frac{r_m}{1 - \tau} \]

- \(r_m \): yield on tax-free municipal
- \(r \): equivalent taxable yield
- \(\tau \): tax-rate

Example:
- your marginal tax rate is 30%, T-bond offers 10% yield, what yield does a muni bond need to offer to get you interested?

Yield Curve

- Definition
 - A graph of YTM as a function of maturity
 - Also called “term structure of interest rates”
- Expectation theory:
 - YTM determined by expectation of future rate
- Liquidity preference theory:
 - Investor demands a risk premium for long-term bond
 - Explains upward-trending yield curve on average
- Market segmentation theory:
 - Separation of long-maturity and short-maturity bond markets, with each at its own equilibrium
 - Explains all forms of yield curve
Recap

- How to value a bond based on DCF approach?
- What’s the meaning of yield?
- What are the differences between current yield, YTM and yield-to-call?
- How does call and default options affect bond yield?
- How to find the equivalent taxable yield of a municipal bond?
- What are the three theories of yield?