Rational Shapes of the Volatility Surface

Jim Gatheral
Global Equity-Linked Products
Merrill Lynch
References

• J. Gatheral, Courant Institute of Mathematical Sciences Lecture Notes, http://www.math.nyu.edu/fellows_fin_math/gatheral/.

Goals

• Derive arbitrage bounds on the slope and curvature of volatility skews.
• Investigate the strike and time behavior of these bounds.
• Specialize to stochastic volatility and jumps.
• Draw implications for parameterization of the volatility surface.
Slope Constraints

• No arbitrage implies that call spreads and put spreads must be non-negative. i.e.
\[
\frac{\partial C}{\partial K} \leq 0 \quad \text{and} \quad \frac{\partial P}{\partial K} \geq 0
\]

• In fact, we can tighten this to
\[
\frac{\partial C}{\partial K} \leq 0 \quad \text{and} \quad \frac{\partial}{\partial K} \left(\frac{P}{K} \right) \geq 0
\]
• Translate these equations into conditions on the implied total volatility $\sigma[y]$ as a function of $y = \ln\left(\frac{K}{F}\right)$.

• In conventional notation, we get

$$
\sigma'[y] \leq \sqrt{2\pi} \exp\left\{d_2^2/2\right\} N(d_2)
$$

$$
\sigma'[y] \geq -\sqrt{2\pi} \exp\left\{d_1^2/2\right\} N(-d_1)
$$
• Assuming $\sigma[y] = 0.25 - 0.3y$ we can plot these bounds on the slope as functions of y.
• Note that we have plotted bounds on the slope of total implied volatility as a function of y. This means that the bounds on the slope of BS implied volatility get tighter as time to expiration increases by $1/\sqrt{T}$.
Convexity Constraints

• No arbitrage implies that call and puts must have positive convexity. *i.e.*

\[\frac{\partial^2 C}{\partial K^2} \geq 0 \text{ and } \frac{\partial^2 P}{\partial K^2} \geq 0 \]

• Translating these into our variables gives

\[\frac{\partial^2 C}{\partial y^2} \geq \frac{\partial C}{\partial y} \]
• We get a complicated expression which is nevertheless easy to evaluate for any particular function $\sigma[y]$.

$$\sigma''[y] \geq \frac{1}{4 \sigma[y]^3}$$

$$(4\sigma[y]^2 + 8y\sigma[y] \sigma'[y] - 4y^2 \sigma'[y]^2 + \sigma[y]^4 \sigma'[y]^2)$$

• This expression is equivalent to demanding that butterflies have non-negative value.
• Again, assuming $\sigma[y] = 0.25$ and $\sigma'[y] = -0.3$
 we can plot this lower bound on the convexity as a function of σ.
Implication for Variance Skew

• Putting together the vertical spread and convexity conditions, it may be shown that implied variance may not grow faster than linearly with the log-strike.
• Formally,

\[
\frac{v[y]}{y} \equiv \frac{\sigma_{BS}^2[y]}{y} \rightarrow \text{some constant } A \text{ as } |y| \rightarrow \infty
\]
Local Volatility

- Local volatility $\sigma(K,T)$ is given by

$$\sigma^2(K,T) = \frac{\partial C}{\partial T} \left(\frac{1}{2} \frac{\partial^2 C}{\partial K^2} \right)$$

- Local variances are non-negative iff arbitrage constraints are satisfied.
Time Behavior of the Skew

• Since in practice, we are interested in the lower bound on the slope for most stocks, let’s investigate the time behavior of this lower bound.

• Recall that the lower bound on the slope can be expressed as

\[-\sqrt{2\pi} \exp\left\{-d_1^2/2\right\} N(-d_1)\]
• For small times, \(d_1 \approx 0 \) and \(N(-d_1) \approx \frac{1}{2} \)

so

\[
\sigma'[0] \geq -\sqrt{\frac{\pi}{2}}
\]

Reinstating explicit dependence on T, we get

\[
\sigma_{BS}'[0] \geq -\sqrt{\frac{\pi}{2T}}
\]

That is, \(\sqrt{T} \) for small \(T \).
• Also,

\[d_1 = \frac{\sigma[0]}{2} \rightarrow \infty \text{ as } t \rightarrow \infty \]

• Then, the lower bound on the slope

\[\sigma'[0] \geq -\sqrt{2\pi} \exp\left\{d_1^2/2\right\} N(-d_1) \]

\[\approx -\frac{1}{d_1} = -\frac{2}{\sigma[0]} \]

• Making the time-dependence of \(\sigma[0] \) explicit,

\[\sigma_{BS}'[0] \geq -\frac{1}{T} \frac{2}{\sigma_{BS}[0]} \text{ as } T \rightarrow \infty \]
• In particular, the time dependence of the at-the-money skew cannot be

\[\sigma_{BS}'[0] \approx -\frac{1}{\sqrt{T}} \]

because for any choice of positive constants \(a, b \)

\[\exists T \text{ large enough s.t. } -\frac{a}{\sqrt{T}} < -\frac{b}{T} \]
• Assuming $\sigma_{BS}[0] = 0.25$, we can plot the variance slope lower bound as a function of time.
A Practical Example of Arbitrage

• We suppose that the ATMF 1 year volatility and skew are 25% and 11% per 10% respectively. Suppose that we extrapolate the vol skew using a $1/\sqrt{T}$ rule.

• Now, buy 99 puts struck at 101 and sell 101 puts struck at 99. What is the value of this portfolio as a function of time to expiration?
Current Market	100.00	100.00	100.00	100.00
Dividends (cts. yield or schedule)	0.00%	0.00%	0.00%	0.00%
Strike	101.00	99.00	101.00	99.00
Start Date (date on which strike is set)	03-Apr-98	03-Apr-98	03-Apr-98	03-Apr-98
Shares = s, Notional = n	s	s	s	s
Expiration Date	03-Apr-99	03-Apr-99	03-Apr-02	03-Apr-02
Stock Rate (sa/365 rate or curve)	0.000%	0.000%	0.000%	0.000%
Pay Rate (sa/365 rate or curve)	0.000%	0.000%	0.000%	0.000%
Volatility (number or curve)	23.90%	26.10%	24.45%	25.55%
Call =c, Put= p	p	p	p	p
Option Price	10.07	9.84	19.92	19.58
Delta	-0.4690	-0.4329	-0.4113	-0.3916
Gamma (per 1%)	0.0166	0.0151	0.0080	0.0075
Vega per 1% vol	0.3976	0.3932	0.7774	0.7675
Theta per day	-0.0130	-0.0141	-0.0065	-0.0067
Position	99	-101	99	-101
Value	996.72	(993.70)	1,972.34	(1,977.18)
Portfolio Value	3.02			(4.83)

Arbitrage!
With more reasonable parameters, it takes a long time to generate an arbitrage though….

<table>
<thead>
<tr>
<th>Current Market</th>
<th>100.00</th>
<th>100.00</th>
<th>100.00</th>
<th>100.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dividends (cts. yield or schedule)</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Strike</td>
<td>101.00</td>
<td>99.00</td>
<td>101.00</td>
<td>99.00</td>
</tr>
<tr>
<td>Start Date (date on which strike is set)</td>
<td>03-Apr-98</td>
<td>03-Apr-98</td>
<td>03-Apr-98</td>
<td>03-Apr-98</td>
</tr>
<tr>
<td>Shares = s, Notional = n</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>Expiration Date</td>
<td>03-Apr-99</td>
<td>03-Apr-99</td>
<td>03-Apr-98</td>
<td>03-Apr-98</td>
</tr>
<tr>
<td>Stock Rate (sa/365 rate or curve)</td>
<td>0.000%</td>
<td>0.000%</td>
<td>0.000%</td>
<td>0.000%</td>
</tr>
<tr>
<td>Pay Rate (sa/365 rate or curve)</td>
<td>0.000%</td>
<td>0.000%</td>
<td>0.000%</td>
<td>0.000%</td>
</tr>
<tr>
<td>Volatility (number or curve)</td>
<td>24.70%</td>
<td>25.30%</td>
<td>24.96%</td>
<td>25.04%</td>
</tr>
<tr>
<td>Call =c, Put= p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Option Price</td>
<td>10.39</td>
<td>9.52</td>
<td>63.07</td>
<td>61.61</td>
</tr>
<tr>
<td>Delta</td>
<td>-0.4668</td>
<td>-0.4340</td>
<td>-0.1902</td>
<td>-0.1864</td>
</tr>
<tr>
<td>Gamma (per 1%)</td>
<td>0.0161</td>
<td>0.0156</td>
<td>0.0015</td>
<td>0.0015</td>
</tr>
<tr>
<td>Vega per 1% vol</td>
<td>0.3975</td>
<td>0.3934</td>
<td>1.8909</td>
<td>1.8670</td>
</tr>
<tr>
<td>Theta per day</td>
<td>-0.0135</td>
<td>-0.0136</td>
<td>-0.0013</td>
<td>-0.0013</td>
</tr>
<tr>
<td>Position</td>
<td>99</td>
<td>-101</td>
<td>99</td>
<td>-101</td>
</tr>
<tr>
<td>Value</td>
<td>1,028.21</td>
<td>(961.92)</td>
<td>6,244.14</td>
<td>(6,222.68)</td>
</tr>
<tr>
<td>Portfolio Value</td>
<td>66.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merrill Lynch</td>
<td></td>
<td></td>
<td></td>
<td>21.46</td>
</tr>
</tbody>
</table>

50 Years!
No arbitrage!
So Far….

- We have derived arbitrage constraints on the slope and convexity of the volatility skew.
- We have demonstrated that the $1/\sqrt{T}$ rule for extrapolating the skew is inconsistent with no arbitrage. Time dependence must be at most $1/T$ for large T.
Stochastic Volatility

• Consider the following special case of the Heston model:

\[dx = \mu \, dt + \sqrt{v} \, dZ \]
\[dv = -\lambda (v - \bar{v}) \, dt - \eta \sqrt{v} \, dZ \]

• In this model, it can be shown that

\[\frac{\partial v_{BS}}{\partial y} \bigg|_{y=0} \approx -\eta \frac{1}{\lambda T} \left\{ 1 - \frac{1 - e^{-\lambda T}}{\lambda T} \right\} \]
• For a general stochastic volatility theory of the form:

\[dx = \mu \, dt + \sqrt{v} \, dZ_1 \]

\[dv = -\lambda (v - \bar{v}) \, dt - \eta \beta(v) \sqrt{v} \, dZ_2 \]

with

\[\langle dZ_1, dZ_2 \rangle = \rho \, dt \]

we claim that (very roughly)

\[
\left. \frac{\partial v_{BS}}{\partial y} \right|_{y=0} \approx \rho \eta \beta(v) \frac{1}{\lambda T} \left\{ 1 - \frac{1 - e^{-\lambda T}}{\lambda T} \right\}
\]
• Then, for very short expirations, we get
 \[\frac{\partial v_{BS}}{\partial y} \bigg|_{y=0} \approx \frac{\rho \eta \beta(v)}{2} \]
 - a result originally derived by Roger Lee and for very long expirations, we get
 \[\frac{\partial v_{BS}}{\partial y} \bigg|_{y=0} \approx \frac{\rho \eta \beta(v)}{\lambda T} \]
 • Both of these results are consistent with the arbitrage bounds.
Doesn’t This Contradict \sqrt{T}?

- Market practitioners’ rule of thumb is that the skew decays as $1/\sqrt{T}$.
- Using $\lambda = 1.15$ (from Bakshi, Cao and Chen), we get the following graph for the relative size of the at-the-money variance skew:
ATM Skew as a Function of T

Relative Skew

-0.8
-1
-1.2
-1.4
-1.6
-1.8
0.5 1 1.5 2 T

Stochastic Vol. ($\lambda = 1.15$)

$1/\sqrt{T}$

Actual SPX skew (5/31/00)
Heston Implied Variance

Parameters: $v = 0.04, \bar{v} = 0.04, \lambda = 1.15, \rho = -0.39, \eta = 0.64$

from Bakshi, Cao and Chen.
A Simple Regime Switching Model

• To get intuition for the impact of volatility convexity, we suppose that realised volatility over the life of a one year option can take one of two values each with probability 1/2. The average of these volatilities is 20%.

• The price of an option is just the average option price over the two scenarios.

• We graph the implied volatilities of the resulting option prices.
High Vol: 21%; Low Vol: 19%
High Vol: 39%; Low Vol: 1%
Intuition

- As $|y| \to \infty$, implied volatility tends to the highest volatility.
- If volatility is unbounded, implied volatility must also be unbounded.
- From a trader’s perspective, the more out-of-the-money (OTM) an option is, the more vol convexity it has. Provided volatility is unbounded, more OTM options must command higher implied volatility.
Asymmetric Variance Gamma
Implied Variance

Parameters: \(\bar{w} = 0.04, \nu = 0.1, \theta = -1.5, \rho = -0.4 \)
Jump Diffusion

• Consider the simplest form of Merton’s jump-diffusion model with a constant probability λ of a jump to ruin.
• Call options are valued in this model using the Black-Scholes formula with a shifted forward price.
• We graph 1 year implied variance as a function of log-strike with $\nu = 0.04, \lambda = 0.05$:
Jump-to-Ruin Model

Parameters: $\bar{v} = 0.04, \lambda = 0.05$

$y = \ln(K/F)$
• So, even in jump-diffusion, \(v \) is linear in \(y \) as \(|y| \to \infty \).

• In fact, we can show that for many economically reasonable stochastic-volatility-plus-jump models, implied BS variance must be asymptotically linear in the log-strike \(y \) as \(|y| \to \infty \).

• This means that it does not make sense to plot implied BS variance against delta. As an example, consider the following graph of \(v \) vs. \(\delta \) in the Heston model:
Variance vs δ in the Heston Model

\[\text{Variance} \]

δ
Implications for Parameterization of the Volatility Surface

• Implied BS variance ν must be parameterized in terms of the log-strike y (ν vs delta doesn’t work).

• ν is asymptotically linear in y as $|y| \to \infty$

\[
\frac{\partial \nu}{\partial y} \bigg|_{y=0} \quad \text{decays as} \quad \frac{1}{T} \quad \text{as} \quad T \to \infty
\]

• $\frac{\partial \nu}{\partial y} \bigg|_{y=0}$ tends to a constant as $T \to 0$