Variancedynamics: Joint evidence from options and high-frequency returns

Liuren Wu

Zicklin School of Business, Baruch College, the City University of New York, United States

ARTICLE INFO

Article history:
Available online 6 March 2010

JEL classification:
C13
C51
G12
G13

Keywords:
Return variance dynamics
Variance risk premium
Options
Variance swap rates
High-frequency returns
Market microstructure
Realized variance
Quadratic variation
Time-changed Lévy processes

ABSTRACT

This paper analyzes the S&P 500 index return variance dynamics and the variance risk premium by combining information in variance swap rates constructed from options and quadratic variation estimators constructed from tick data on S&P 500 index futures. Estimation shows that the index return variance jumps. The jump arrival rate is not constant over time, but is proportional to the variance rate level. The variance jumps are not rare events but arrive frequently. Estimation also identifies a strongly negative variance risk premium, the absolute magnitude of which is proportional to the variance rate level.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Return variance on financial securities is stochastic. Understanding return variance dynamics is imperative for derivative pricing, risk management, and asset pricing in general. Yet, how to model and estimate variance dynamics remains a challenging task, mainly because return variance is not directly observable as security prices are. Recent advances in two frontiers of finance greatly enhance the identification of return variance dynamics and its pricing. One frontier is the derivatives market. Researchers show that under very general settings, return variance swap rate, which equals the risk-neutral expected value of return variance over a fixed horizon, can be well approximated by the value of a specific portfolio of options across different strikes at the same maturity. In line with this theoretical development, on September 22, 2003, the Chicago Board of Options Exchange (CBOE) launched a new volatility index, the VIX, and back-calculated this index to 1990. This index approximates the 30-day variance swap rate on the S&P 500 index (Carr and Wu, 2006). Thus, the risk-neutral expected value of the 30-day variance becomes an approximately observable series.

The other frontier is market microstructure. The increasing availability of high-frequency data spurs a rapid development of new theories on computing realized variance from high-frequency returns. If the true price of a security can be sampled frequently, the sum of the squared returns over a sample period converges in the limit to the return quadratic variation for that period. More recently, researchers realize that microstructure noise can bias the estimate of return quadratic variation. They propose various methods to account for the microstructure effects.

Variance swap rates constructed from options, and quadratic variation estimators constructed from high-frequency returns, make the return variance an almost observable quantity, up to a risk-neutral projection in the former, and up to a random-jump related error term in the latter. Directly using these series can make inferences on variance dynamics more accurate and less reliant on the underlying return dynamics specification. In this
paper, I exploit the recent advances in both frontiers, and estimate the variance dynamics and variance risk premium on the S&P 500 index from a joint analysis of over 15 years of daily time series on the VIX index and several quadratic variation estimators constructed from tick data on S&P 500 index futures.

Starting with a stochastically time-changed Lévy process for the S&P 500 index return, this paper uses the stochastic time change to capture the index return variance dynamics. By specifying the time change via the instantaneous variance rate, the paper identifies the variance rate dynamics using the variance swap rate and the quadratic variation estimators, without ever specifying, and hence without jointly testing, the Lévy process that defines the return innovations.

This paper analyzes the variance rate dynamics and pricing within the flexible affine framework of Filipovic (2001). Within this framework, the paper estimates several variance dynamics specifications. Estimation shows that the variance rate jumps. The jump arrival rate is not constant over time, but is proportional to the variance level. Jumps in the variance are not rare events, but arrive frequently. Estimation also identifies a strongly negative variance risk premium, the absolute magnitude of which is proportional to the variance level. Jumps in the variance are not rare events, but arise frequently. Estimation also identifies a strongly negative variance risk premium, the absolute magnitude of which is proportional to the variance level.

Combining realized variance estimators with variance swap rates, this paper provides insights on the discontinuous movements of the variance rate dynamics, and answers questions on whether the variance jump intensity is proportional to the variance rate level and whether the variance jumps arrive frequently or are rare events. These questions have not been effectively addressed in the option pricing literature due to identification issues (e.g., Eraker (2004)), nor in the realized variance literature due to the nonparametric nature of the proposed tests (e.g., Barndorff-Nielsen and Shephard, 2004).

In other related works, Jones (2003) studies the variance dynamics using daily series on index returns and CBOE’s old volatility index VXO. Chernov (2007) analyzes the link between high–low range volatility estimators and the VXO. In this paper, I use tick data to construct realized variance estimators, which contain much less noise than estimators from daily returns or high–low data. Furthermore, I use the new VIX index instead of the old VXO, because the new VIX index directly approximates the variance swap rate under very general settings whereas CBOE’s construction of the old VXO involves an erroneous day-counting conversion that biases the estimate upward (Carr and Wu, 2006). Also related is a working paper by Bollerslev et al. (2004), who construct a risk aversion index using realized variance and the new VIX.

The rest of the paper is structured as follows. The next section establishes the theory that underlies our variance dynamics estimation. Section 3 describes the data and the estimation procedure. Section 4 discusses the estimation results. Section 5 concludes.

2. Theory

Let \(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P} \) represent a stochastic basis, with \(\mathbb{P} \) being the physical measure that governs the time series dynamics of the S&P 500 index returns,

\[
\ln S_t / S_0 = \int_0^t \theta_s \, ds + L_{t-1},
\]

where \(\theta_s \) denotes the instantaneous drift of the index return, \(L_t \) denotes a standardized Lévy process with its variance normalized to \(t \), and \(T_{t-1} \) denotes a continuous and differentiable stochastic time change that captures the randomness in the integrated variance over horizon \([r, T]\).

\[
T_{t-1} \equiv \int_r^T \nu(t) \, ds,
\]

where \(\nu(t) \) denotes the instantaneous variance rate.

The objective of this paper is to estimate the instantaneous variance rate dynamics \(\nu(t) \) without ever specifying the return drift process \(\theta_t \) or the return innovation (the standardized Lévy process \(L_t \)). The estimation is based on observations on two quantities. The first is the volatility index VIX squared, which approximates the 30-day variance swap rate on the S&P 500 index and hence the expected value of the 30-day quadratic variation \((\mathbb{Q}V) \) under a risk-neutral measure \(\mathbb{Q} \).

\[
\mathbb{Q}V_{2h} \equiv \frac{1}{h} \mathbb{E}^\mathbb{Q} \left[\mathbb{Q}V_{[t, t+h]} \right] = \frac{1}{h} \mathbb{E}^\mathbb{Q} \left[QV_{t; t+h} \right], \quad h = 30/365,
\]

where the second equality replaces the quadratic variation with its risk-neutral expected value over random jumps, i.e., the risk-neutral integrated variance \(\int_{[t, t+h]} \). The first equality is an approximation. The second quantity is an estimator on the daily quadratic variation, \(QV_{[t, t+1]} \), with \(\delta = 1/365 \) denoting the length of one day. The quadratic variation is defined as the limit in probability of the sum of return squared as the sampling interval approaches zero,

\[
QV_{[t, t+1]} \equiv \lim_{\Delta \to 0} \sum_{t=1}^{[\Delta]} \left(\ln S_{t+1}/S_t + J_{t+1} - J_t \right)^2,
\]

where \([\delta, \Delta]\) denotes the number of observations in a day given sampling interval \(\Delta \) since the integrated variance represents an expectation of the quadratic variation over the random jump realization, we can write,

\[
QV_{[t, t+1]} = T_{t+1} + \eta_{t+1},
\]

where the zero-mean error term \(\eta_{t+1} \) is induced by the random jumps in the index return. In particular, if we let \(\mu_s(dx) \) denote the counting measure of jumps in the index return and let \(\nu_s(dx) \) denote the corresponding compensator, which measures the arrival rate of jumps of size \(x \), the error term becomes

\[
e_{t+1} = \int_{0}^{e_{t+1}} \int_{0}^{\delta} x^2 \mu_s(dx) \, ds,
\]

where \(\mathbb{R}^d \) denotes the real line excluding zero.

Given daily quadratic variation estimators \(\hat{Q}V_t \) from high-frequency return data, we can rewrite Eq. (5) as

\[
\hat{Q}V_t = \nu_t \delta \varphi + \xi_t,
\]

where I approximate the integral in (5) by assuming constant variance rate within a day \(t \), with \(\delta \) denoting the length of one day. In this approximation, I include an additional scaling coefficient \(\varphi \) to further adjust scale mismatches between the quadratic variation estimators and the annualized variance rate derived from the variance swap rate from Eq. (3). The mismatches can come from a number of sources. For example, the quadratic variation estimators are computed based on tick data on index futures during the day trading session from 9:30 am to 3:15 pm Chicago time. Thus, the estimators do not capture after-hour trading activities and overnight information flows that can move the index futures. Further, the instantaneous variance rate derived from the variance swap rate can differ from the variance rate level under the statistical measure if the index level jumps and the jump risk is priced.

The error term \(\xi_t \) in Eq. (7) can come either from the random return jump realizations as defined in (6), or from noises originated...
in the particular quadratic variation estimator (Meddahi, 2003). I assume an AR(1) dynamics for the error term to accommodate potential serial dependence,
\begin{equation}
\eta_{t+1} = \phi_\varepsilon \eta_t + \xi_{t+1},
\end{equation}
where the daily time step is normalized to one for notational clarity and \(\varepsilon\) denotes an iid zero-mean random error term. A non-zero autocorrelation \(\phi_\varepsilon\) can be induced by persistence of the return jump arrival rates and/or microstructure noise in the quadratic variation estimator.

The distribution of \(\eta\) depends on both the jump structure, as defined in (6), and the distribution of the random noise in the quadratic variation estimator. If we make the simplifying assumption that \(\eta\) is normally distributed with variance \(V_\varepsilon\), we can write the daily log likelihood contribution from the quadratic variation estimator as,
\begin{equation}
l(\eta_{t+1}|\eta_t) = -\frac{1}{2} \left[\ln(2\pi) + \ln(V_\varepsilon) + (\eta_{t+1} - \phi_\varepsilon \eta_t)^2/V_\varepsilon\right].
\end{equation}

When the distribution of \(\eta\) deviates from the normal assumption, (9) represents a valid quasi-likelihood for inferences on the conditional mean of the quadratic estimator, \(v_t\). In particular, the inferences on \(v_t\) depend not on the distribution of \(\eta\) nor on its variance \(V_\varepsilon\), and standard likelihood ratio tests are equally applicable to the quasi-likelihood (McCullagh and Nelder (1983), pp. 168–172). In estimating a constant variance from a noisy quadratic variation estimator, Ait-Sahalia et al. (2005) show that even if the noise distribution is misspecified, the variance estimator obtained by maximizing the misspecified log-likelihood function remains consistent and the asymptotic variance of the estimator is the same as that from the true likelihood. Xiou (2009) further shows that in the presence of stochastic volatility and market microstructure noise, the integrated variance estimator remains consistent, efficient, and robust as a quasi-maximum likelihood estimator under the misspecified assumptions. Hence, inferences on the variance rate dynamics remain valid whether Eq. (9) is regarded as the true log likelihood or quasi-likelihood on the quadratic variation estimator.

2.1. Affine variance rate dynamics and variance swap pricing

To derive the likelihood on the instantaneous variance rate, I consider a general one-factor affine specification (Filipović, 2001), under which the variance rate is governed by the stochastic differential equation,
\begin{equation}
dv_t = (\alpha - \kappa v_t) dt + \sqrt{\omega v_t} dW_t + \int_{\mathbb{R}_+^c} x \left[\mu(dx) - (v_t(dx) + v_t \psi_p(dx))\right] dt, \tag{10}
\end{equation}
where \(\alpha, \kappa, \omega\) are all positive constants, \(\mathbb{R}_+^c\) denotes the positive half line excluding zero, and \(v_t(dx)\) and \(\psi_p(dx)\) denote two nonnegative Borel measures that define the arrival rate of jumps in the variance rate, with \(v_t(dx)\) describing a jump component with a constant arrival rate and \(\psi_p(dx)\) describing a jump component with the arrival rate proportional to the variance rate level. The two Borel measures must satisfy the following condition:
\begin{equation}
\int_{\mathbb{R}_+^c} (x^{1-c_1}) v_t(x) dx + \int_{\mathbb{R}_+^c} (x^2 x^{1-c_1}) \psi_p(x) dx < \infty \tag{11}
\end{equation}
where \(1_{x<1}\) is an indicator function that is valued at one when \(x < 1\) and zero otherwise.

To obtain the conditional likelihood on the variance rate, I start with the characteristic function,
\begin{equation}
\phi_{v_t}(u) = \mathbb{E}_t \left[e^{iu v_t}\right], \quad u \in \mathbb{R}, \tag{12}
\end{equation}
where \(\delta\) refers to the daily time interval. The affine dynamics in Eq. (10) dictates that the characteristic function is exponential affine in \(v_t\),
\begin{equation}
\phi_{v_t}(u) = \exp \left(-b(\delta) v_t - c(\delta) \right), \tag{13}
\end{equation}
where the coefficients \([b(\delta), c(\delta)]\) solve the following ordinary differential equations:
\begin{align}
b'(\delta) &= -\kappa b(\delta) - \frac{1}{2} \omega b(\delta)^2 + \int_{\mathbb{R}_+^c} (1 - e^{-\beta b(\delta)} - b(\delta) (x I_{x<1})) \psi_p(dx), \\
c'(\delta) &= ab(\delta) + \int_{\mathbb{R}_+^c} (1 - e^{-\beta b(\delta)}) v_t(dx), \tag{14}
\end{align}
with the initial boundary conditions: \(c(0) = 0\) and \(b(0) = 0\). The ordinary differential equations can be solved using standard numerical methods. Given the characteristic function, the conditional density of \(v_{t+1}\) conditional on the observation \(v_t\) can be computed via fast Fourier inversion.

To infer the variance rate from the variance swap rate according to Eq. (3), I further specify an analogous variance rate dynamics under the risk-neutral measure \(Q\),
\begin{equation}
dv_t = (\bar{\alpha} - \bar{\kappa} v_t) dt + \sqrt{\bar{\omega} v_t} dW_t + \int_{\mathbb{R}_+^c} x \left[\bar{\mu}(dx) - (\bar{v}_t(dx) + v_t \bar{\psi}_p(dx))\right] dt, \tag{15}
\end{equation}
where the tildes on \(a, \kappa, v_t\), and \(v_t\) denote their corresponding quantities under measure \(Q\). Given the affine \(Q\)-dynamics, we can write the variance swap rate as an affine function of the instantaneous variance rate,3
\begin{equation}
SW_{t+1} = \frac{1}{h^2} \int_{\mathbb{R}_+^c} v_{t+1}(s) ds = b(h)v_t + c(h), \tag{16}
\end{equation}
where the coefficients \([b(h), c(h)]\) are given by,
\begin{align}
b(h) &= 1 - e^{-\tilde{v} h}, \\
c(h) &= \frac{\tilde{\alpha}}{\tilde{\kappa} h} \left(1 - \frac{1 - e^{-\tilde{v} h}}{\tilde{\kappa} h} \right), \tag{17}
\end{align}
with \(\tilde{\alpha}\) and \(\tilde{\kappa}\) being the jump-adjusted risk-neutral drift coefficients \(\kappa = \kappa - \nabla \psi_p(0)\) and \(\alpha = \alpha - \nabla \psi_p(0)\), where \(\nabla \psi_p(0)\) and \(\nabla \psi_q(0)\) denote the gradients of the characteristic exponents of \(v_t(x)\) and \(v_t(x)\), respectively, evaluated at zero. The variance swap rate depends only on the risk-neutral drift specification of the variance rate, but not on the innovation specification. Hence, we leave \(\tilde{v}_t(dx)\) and \(\tilde{\psi}_p(dx)\) unspecified.

2.2. Variance rate jump specification

The coefficients on the characteristic function of the instantaneous variance rate in (14) depend on the specification of the Borel measures for the two jump components. The contributions of the jump components are related to their respective characteristic exponents \(\psi_j(u)\), defined as
\begin{equation}
\psi_j(u) = \int_{\mathbb{R}_+^c} (1 - \alpha u x (1_{x<1})) \psi_j(dx), \quad j = c, p, \tag{18}
\end{equation}
where the term with the truncation function \(x_{1-c_1}\) is needed for infinite variation jump components so that the integral is well defined (Bertoin, 1996).

\(3\) See Egloff et al. (forthcoming) for the derivation of variance swap pricing under general affine specifications.
In this paper, I consider a general class of jump specifications, with the jump arrival rate controlled by an exponentially dampened power law:

\[v_i(x) = \lambda_i e^{-\frac{x}{\alpha_i}} x^{-\alpha_i-1} dx, \quad \alpha_i < 1, \alpha_p < 2. \tag{19} \]

Intuitively, the proportional coefficients \((\lambda_i, \lambda_p)\) control the overall arrival rate, the exponential scaling coefficients \((v_i, v_p)\) control the arrival of large jumps, and the power coefficients \((\alpha_i, \alpha_p)\) control the arrival of small jumps. Depending on the value of the power coefficient \(\alpha\), the jump process shows different behaviors. I consider three values for \(\alpha\), at \(-1, 0, 1\), respectively.

When \(\alpha_i = -1\) for \(j = c, p\), the power component in (19) disappears. The jump structure generates a finite number of jumps within any finite time interval, with the mean jump arrival rate given by \(\int_0^\infty v_i(dx) = \lambda_i v_i\). The characteristic exponent is given by

\[\psi_i(u) = \lambda_i \int_0^\infty (1 - e^{iu}) e^{-\frac{x}{\alpha_i}} x^{-\alpha_i-1} dx = -iu \lambda_i v_i^2 \tag{20} \]

The jump-adjusted drift terms become \(a_j = a + \lambda_i v_i^2\) and \(\kappa_j = \kappa + \lambda_p v_p^2\).

When \(\alpha_p = 0\) for \(j = c, p\), the sample path exhibits infinite activity but finite variation. The jump structure generates an infinite number of jumps within any finite time interval. The integral of the Borel measure \(v_p(dx)\) is no longer finite, but the integral \(\int_0^\infty (x^{1-\alpha_i}) v_i(dx) < \infty\) is finite. The characteristic exponent is

\[\psi_p(u) = \lambda_p \int_0^\infty (1 - e^{iu}) e^{-\frac{x}{\alpha_p}} x^{-\alpha_p-1} dx = -iu \lambda_p v_p^2 \tag{21} \]

The jump-adjusted drift terms become \(a_j = a + \lambda_i v_i^2\) and \(\kappa_j = \kappa + \lambda_p v_p^2\).

When \(\alpha_p = 1\), the sample paths of the jump show infinite variation, with \(\int_0^\infty (x^{1-\alpha_i}) v_i(dx)\) no longer finite. The sample paths retain finite quadratic variation as \(\int_0^\infty (x^{1-\alpha_i}) v_i(dx) < \infty\). Hence, it can only be used to model \(v_p(dx)\). The characteristic exponent is (Wu, 2006).

The estimation involves two sets of data. The first is CBOE’s new VIX series constructed from European options on the S&P 500 index. The second estimator is the autoregressive bias corrected realized variance estimator (ACRV) proposed by Hansen and Lunde (2006):

\[\text{ACRV}_t = \sum_{j=1}^m r_{ij}^2 + 2 \sum_{m=1}^q \sum_{h=1}^{m-1} r_{ij} r_{i(t+h)} \tag{23} \]

The third estimator is the two-scale realized variance estimator (TSRV) proposed by Zhang et al. (2005), which involves calculating the realized variance at two sampling frequencies. Let \(\text{RRRV}_h^q\) denote the raw return realized variance estimated at the highest frequency of the available data, which is second by second in this paper, and let \(\text{RRRV}_p^q\) denote the raw return realized variance based on data sampled every \(q\) seconds. By starting at different points, one can compute different estimators for \(\text{RRRV}_h^q\) based on \(q\) different subsamples. Let \(\text{RRRV}_p^q\) denote the average of the \(q\) subsample \(\text{RRRV}_p^q\) estimators. The two-scale estimator combines the average subsample estimators with the raw return estimator at the highest frequency to cancel out the effect of microstructure noise.

\[\text{TSRV}_t = \frac{(\text{RRRV}_h^q - \text{RRRV}_p^q)}{(1 - \frac{1}{q})} \tag{24} \]

Based on a comparison of the sample mean and the sample variance of the ACRV estimators at different window sizes and the TSRV estimators at different second scales, I choose \(q = 50\) as the window size for the ACRV estimator and \(q = 50\) as the subscale for the TSRV estimator when they are used in the variance rate dynamics estimation. The variance rate dynamics are estimated with a (quasi-) maximum likelihood method based on the time series of VIX and one of the three quadratic variance estimators. The estimation proceeds as follows. First, given model parameters, the instantaneous variance rate, \(v_i\), is inferred from the observation on the VIX according to the following affine relation:

\[\text{VIX}_t^2 = b(h) v_i + c(h), \tag{25} \]

where \(h = 30/365\) denotes the 30-day maturity of the variance swap rate and the coefficients \((b(h), c(h))\) are functions of the risk-neutral drift parameters \((a_j, \kappa_j)\) of the variance rate, as given in (17). Second, given the extracted time series on the instantaneous variance rates \(v_i\), the daily likelihood function for \(v_{i+1}\) conditional on \(v_i\), \(l(v_{i+1} | v_i)\), can be computed by applying a fast Fourier transform to the characteristic function in Eq. (13). Third, given the instantaneous variance rate \(v_i\), the error term in the quadratic variance estimator, \(\epsilon_i\), is derived from Eq. (7). The daily (quasi-)likelihood function on the error term, \(l(\epsilon_i+1 | \epsilon_i)\), is constructed according to Eq. (9). Finally, the model parameters, \(\Theta\), are estimated by maximizing the sum of daily likelihood functions on \(v_i\) and \(\epsilon_i\):

\[\Theta = \arg \min_{\Theta} L(\Theta), \quad L(\Theta) = \sum_{i=1}^{N-1} l(v_{i+1} | v_i) + l(\epsilon_{i+1} | \epsilon_i). \tag{26} \]
where $N = 3787$ denotes the number of business days in the 15-year sample period.

With each quadratic variation estimator, I estimate eight models that differ in the jump specifications. Among the eight models, two models assume constant jump arrival rates ($\nu_p(dx) = 0$) with the power coefficients $\alpha_p = -1$ and 0, respectively; three models assume proportional jump arrival rates ($\nu_p(dx) = 0$) with $\alpha_p = -1$, 0, and 1, respectively; and three nesting models that include both a constant and a proportional jump model, with $\alpha_p = -1$, $\alpha_p = 0$, and $\alpha_p = -1$, $\alpha_p = 1$, respectively. For each model, I repeat the estimation three times, each time using a different quadratic variation estimator.

4. Return variance dynamics and pricing

Tables 1–3 report the parameter estimates, t-statistics, and the maximized likelihood values for the eight model specifications and the three quadratic variation estimators. Each table summarizes the results on one quadratic variation estimator.

4.1. Return variance jumps, with the arrival rate proportional to the variance rate level

Under each jump type specification (α_p) and for each quadratic variation estimator, I estimate a model with only constant jump arrivals and a model with jump arrival rates proportional to the instantaneous variance rate. In all scenarios, the maximized likelihood values are larger for the proportional jump specification than for the constant jump specification, suggesting that the proportional jump arrival specification captures the index return variance dynamics better.

To measure the statistical significance of the performance difference, I construct a likelihood ratio test for non-nested models according to Vuong (1989), $V_{\text{pc}} = \sqrt{N - 1} \frac{\mu_p / \sigma_p}{\mu_c / \sigma_c}$, where μ_p and σ_p denote the sample mean and standard deviation of the daily likelihood ratios between the two models p and c, with p denoting the model with proportional jumps and c the model with constant jumps. Under the null hypothesis that the two models are identical in performance, the statistic V_{pc} has a standard normal distribution asymptotically. Table 4 reports the estimates on V_{pc} under two different jump type specifications ($\alpha_p = -1, 0$) and three different quadratic variation estimators (RRRV, ACRV, and TSRV). In calculating the statistics, the standard deviation estimator is adjusted for serial dependence according to Newey and West (1987), with the number of lags optimally chosen according to Andrews (1991) based on an AR(1) specification on the series. The estimates for the statistics are large and positive in all scenarios, suggesting that the proportional jump specification significantly outperforms the constant jump specification.

The paper also estimates models that allow both components, with the same jump type for both components: $\alpha_p = \alpha_p = -1$ and $\alpha_p = \alpha_p = 0$. When the proportional jump exhibits finite variation with $\alpha_p = 1$, the finite activity jump ($\alpha_p = 1$) is used for the constant jump component, since the sample paths of the constant jump component must show finite variation. To test whether a constant jump component is still needed when there exists a proportional jump component, I perform a standard likelihood ratio test between the nesting model with both jump components and the corresponding restricted version with only the proportional jump component, $L.R_{bp} = 2 (L_p - L_c)$, where the subscript b denotes a model with both constant and proportional jump components and p denotes the corresponding model with only the proportional jump component. The statistic $L.R_{bp}$ has a chi-square distribution with two degrees of freedom, since the nesting model has two additional free parameters. Table 5 reports the likelihood ratio estimates and the corresponding p-values in parentheses. The tests suggest that a constant jump

<table>
<thead>
<tr>
<th>θ</th>
<th>$\alpha_p = \alpha_p = -1$</th>
<th>$\alpha_p = \alpha_p = 0$</th>
<th>$\alpha_p = -1, \alpha_p = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\theta}_1$</td>
<td>0.2094</td>
<td>0.2094</td>
<td>0.2094</td>
</tr>
<tr>
<td>$\hat{\theta}_2$</td>
<td>0.2093</td>
<td>0.2095</td>
<td>0.2090</td>
</tr>
<tr>
<td>$\hat{\theta}_3$</td>
<td>0.2090</td>
<td>0.2092</td>
<td>0.2089</td>
</tr>
<tr>
<td>$\hat{\theta}_4$</td>
<td>0.2095</td>
<td>0.2092</td>
<td>0.2090</td>
</tr>
</tbody>
</table>

Notes: Entries report the estimates of the structural parameters and their t-statistics (in parentheses) that govern the S&P 500 index return variance rate dynamics and risk premium. CRP and PRP denote the constant and proportional component of the variance risk premium, computed from the parameter estimates. The last row reports the average of the maximized daily likelihood value. Estimation is based on daily data on the VIX and daily raw return realized variance (RRRV) estimators constructed using second-by-second returns on S&P 500 index futures. The sample is from January 2, 1990, to December 31, 2004, a total of 3787 observation for each series.

Table 1
Model parameter estimates on variance dynamics using RRRV estimators.

<table>
<thead>
<tr>
<th>θ</th>
<th>$\alpha_p = \alpha_p = -1$</th>
<th>$\alpha_p = \alpha_p = 0$</th>
<th>$\alpha_p = -1, \alpha_p = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\theta}_1$</td>
<td>0.2094</td>
<td>0.2094</td>
<td>0.2094</td>
</tr>
<tr>
<td>$\hat{\theta}_2$</td>
<td>0.2093</td>
<td>0.2095</td>
<td>0.2090</td>
</tr>
<tr>
<td>$\hat{\theta}_3$</td>
<td>0.2090</td>
<td>0.2092</td>
<td>0.2089</td>
</tr>
<tr>
<td>$\hat{\theta}_4$</td>
<td>0.2095</td>
<td>0.2092</td>
<td>0.2090</td>
</tr>
</tbody>
</table>
Table 2
Model parameter estimates on variance dynamics using ACRV estimators.

<table>
<thead>
<tr>
<th>θ</th>
<th>$\alpha = \alpha_p = 1$</th>
<th>$\alpha = \alpha_p = 0$</th>
<th>$\alpha = \alpha = -1$, $\alpha_p = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{y}</td>
<td>0.2094</td>
<td>0.2094</td>
<td>0.2095</td>
</tr>
<tr>
<td>\bar{x}</td>
<td>(24.62)</td>
<td>(24.62)</td>
<td>(147.42)</td>
</tr>
<tr>
<td>α</td>
<td>0.0038</td>
<td>0.0038</td>
<td>0.0010</td>
</tr>
<tr>
<td>λ</td>
<td>0.1881</td>
<td>0.2520</td>
<td>0.2600</td>
</tr>
<tr>
<td>κ</td>
<td>12.7829</td>
<td>26.7474</td>
<td>33.5550</td>
</tr>
<tr>
<td>ψ</td>
<td>0.1921</td>
<td>0.1436</td>
<td>0.1331</td>
</tr>
<tr>
<td>ψ</td>
<td>(36.25)</td>
<td>(36.25)</td>
<td>(36.25)</td>
</tr>
<tr>
<td>L</td>
<td>0.2094</td>
<td>0.2094</td>
<td>0.2094</td>
</tr>
</tbody>
</table>

Table 3
Model parameter estimates on variance dynamics using TSRV estimators.

<table>
<thead>
<tr>
<th>θ</th>
<th>$\alpha = \alpha_p = 1$</th>
<th>$\alpha = \alpha_p = 0$</th>
<th>$\alpha = \alpha = -1$, $\alpha_p = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{y}</td>
<td>0.2095</td>
<td>0.2095</td>
<td>0.2095</td>
</tr>
<tr>
<td>\bar{x}</td>
<td>(25.29)</td>
<td>(25.34)</td>
<td>(146.70)</td>
</tr>
<tr>
<td>α</td>
<td>0.0038</td>
<td>0.0038</td>
<td>0.0010</td>
</tr>
<tr>
<td>λ</td>
<td>0.1898</td>
<td>0.2462</td>
<td>0.2673</td>
</tr>
<tr>
<td>κ</td>
<td>12.8925</td>
<td>26.6492</td>
<td>27.3224</td>
</tr>
<tr>
<td>ψ</td>
<td>0.1921</td>
<td>0.1436</td>
<td>0.1331</td>
</tr>
<tr>
<td>ψ</td>
<td>(36.34)</td>
<td>(26.34)</td>
<td>(14.16)</td>
</tr>
<tr>
<td>L</td>
<td>0.2094</td>
<td>0.2094</td>
<td>0.2094</td>
</tr>
</tbody>
</table>

Notes: Entries report the estimates of the structural parameters and their t-statistics (in parentheses) that govern the S&P 500 index return variance rate dynamics and risk premium. CRP and PRP denote the constant and proportional portion of the variance risk premium, computed from the parameter estimates. The last row reports the average of the maximized daily likelihood value. Estimation is based on daily data on the VIX and daily ACRV estimators constructed using second-by-second returns on S&P 500 index futures. The sample is from January 2, 1990 to December 31, 2004, a total of 3787 observation for each series.
component is needed in addition to the proportional jump component when the chosen jump specification shows finite activity ($\alpha_p = -1$). The need becomes marginal when the jump specification shows infinite activity but finite variation ($\alpha_p = 0$). Finally, when an infinite variation jump specification is chosen ($\alpha_p = 1$) for the proportional jump component, a constant jump component is no longer necessary, as the model with a purely proportional jump component can no longer be rejected.

Also indicative are the t-statistics of the parameter estimates on the two jump components. In all scenarios, the estimates for the two parameters that govern the proportional jump component (λ_p, v_p) are highly significant. The estimates for the constant jump parameters (λ_c, v_c) are also statistically significant when proportional jumps are not allowed. However, once a proportional jump component is allowed, the estimates for the constant jump parameters become insignificant. Compared with the chi-square tests, the power of the t-tests seem lower. Nevertheless, the results from the two types of tests are largely consistent with each other. As α_p increases from -1 to 0 and then to 1, the t-values on the constant jump parameters (λ_c, v_c) become smaller, so are the p values from the chi-square tests.

Taken together, the estimation results show that the index return variance rate jumps, and the jump arrival rate is not constant over time, but is proportional to the instantaneous variance rate level. Once a proportional jump component is incorporated, it is largely unnecessary to include another jump component with constant arrival rates.

4.2 Variance jumps arrive frequently

For a proportional jump component, the behavior of the sample paths of the jump component is determined by the power coefficient α_p in the Borel measure $v_p(dx)$. The sample paths exhibit finite activity, and generate a finite number of jumps within any finite interval when the coefficient $\alpha_p < 0$. The sample paths show infinite activity but finite variation when $0 \leq \alpha_p < 1$ and infinite variation when $1 \leq \alpha < 2$.

The estimation results in Tables 1–3 show that in all cases the maximized likelihood values increase monotonically as the power coefficient α_p increases from -1 to 0 and then to 1, suggesting that high-frequency jumps are better suited to capture the discontinuous component of the variance dynamics. To test the statistical significance of the jump differences, the paper resorts to Vuong (1989)'s likelihood ratio test statistic for non-nested models, V_α, and constructs the test between the infinite-variation jump specification ($\alpha_p = 1$) and the other two finite-variation jump types ($\alpha_p = -1$ and 0, respectively) for purely proportional jump arrival specifications. A statistic greater than 1.67 suggests that the infinite variation jump type significantly outperforms the other jump type under the 95% confidence interval.

4.3 Variance risk premia are negative, with the magnitude proportional to the variance level

Using data from both the options market and high-frequency returns, the estimation identifies the drift parameters under both the statistical measure and the risk-neutral measure. The differences between the two sets of parameters determine the variance risk premium. The constant portion of the variance risk premium is $\text{CRP} = \bar{q}_t - \bar{\tilde{q}}_t$. The proportional portion of the variance risk premium is $\text{PRP} = k_t - \tilde{k}_t$.

Tables 1–3 also report the two risk premium components and their t-statistics corresponding to each set of parameter estimates. The estimates for the constant risk premium component (CRP) are positive, but small and mostly insignificant. In contrast, the estimates for the proportional risk premium component (PRP) are negative, large in absolute magnitude, and highly significant. The strongly negative risk premium that is proportional to the variance rate level can come from a negative and proportional market price of the diffusion risk or from a negative market price on the proportional jump risk, or both. The negative sign of the risk premium is in line with the empirical findings in Bakshi and Kapadia (2003), Bollerslev et al. (2004), and Carr and Wu (2009).

Compared to the literature, the estimates for the statistical mean reversion speed λ are two–three times larger in this paper. By directly inverting the VIX squared to obtain the variance rate $v(t)$, the potential measurement errors in the VIX index are directly carried over to the variance rate series. These transient measurement errors, together with the daily estimation frequency, can potentially reduce the estimated persistence of the variance rate dynamics. A direction for future research is to incorporate variance swap rates across several different maturities to reduce the impact of the measurement errors (Egloff et al., forthcoming).

Table 4

Likelihood ratio tests for the outperformance of proportional jumps over constant jumps.

<table>
<thead>
<tr>
<th>Q^α estimators \ jump types</th>
<th>$\alpha_p = \alpha_c = -1$</th>
<th>$\alpha_p = \alpha_c = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>RRRV</td>
<td>7.27</td>
<td>7.37</td>
</tr>
<tr>
<td>ACRV</td>
<td>7.22</td>
<td>7.34</td>
</tr>
<tr>
<td>TSRV</td>
<td>7.29</td>
<td>7.50</td>
</tr>
</tbody>
</table>

Notes: Entries report the likelihood ratio test statistics V_{α_p} for non-nested models on the statistical significance of difference in performance between models with proportional jump arrivals and their corresponding models with constant jump arrivals. A statistic greater than 1.67 suggests that the proportional jump specification significantly outperforms the constant jump specification under the 95% confidence interval.

Table 5

Likelihood ratio tests for the need of a constant jump component.

<table>
<thead>
<tr>
<th>Q^α estimators \ jump types</th>
<th>$\alpha_p = 0$</th>
<th>$\alpha_p = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>RRRV</td>
<td>18.58 (0.0001)</td>
<td>4.42 (0.1097)</td>
</tr>
<tr>
<td>ACRV</td>
<td>18.54 (0.0001)</td>
<td>4.33 (0.1145)</td>
</tr>
<tr>
<td>TSRV</td>
<td>18.79 (0.0001)</td>
<td>4.84 (0.0888)</td>
</tr>
</tbody>
</table>

Notes: Entries report the standard likelihood ratio test statistics $2\ln R_{\alpha_p}$ between the nesting models that include both a constant and a proportional jump component and the corresponding restricted models that only have the proportional jump component. The statistics have a chi-square distribution with two degrees of freedom. The numbers in the parentheses report the p-values of each corresponding statistic.

Table 6

Likelihood ratio tests for the outperformance of infinite-variation over finite-variation jumps.

<table>
<thead>
<tr>
<th>Q^α estimators \ jump types</th>
<th>$\alpha_p = 1$ vs. $\alpha_c = -1$</th>
<th>$\alpha_c = 1$ vs. $\alpha_c = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>RRRV</td>
<td>1.00</td>
<td>1.01</td>
</tr>
<tr>
<td>ACRV</td>
<td>1.01</td>
<td>1.00</td>
</tr>
<tr>
<td>TSRV</td>
<td>0.99</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Notes: Entries report the likelihood ratio test statistics V_{α_p} for non-nested models on the statistical significance of difference in performance between infinite variation jump type ($\alpha_p = 1$) and the other two finite-variation jump types ($\alpha_p = -1$ and 0, respectively) for purely proportional jump arrival specifications. A statistic greater than 1.67 suggests that the infinite variation jump type significantly outperforms the other jump type under the 95% confidence interval.
5. Conclusion

This paper studies the S&P 500 index return variance dynamics and variance risk premium using information from both the options market and high-frequency returns. Estimation shows that the index return variance rate jumps, and that the jump arrival rate is not constant over time, but is proportional to the variance level. Jumps in the variance rate dynamics are not rare events, but arrive frequently. Estimation also identifies a strongly negative variance risk premium, the absolute magnitude of which is proportional to the instantaneous variance rate level.

Option pricing and market microstructure represent two frontiers in finance that are experiencing rapid development in terms of both industry expansion and academic advancement. This article represents a nascent effort in bringing these two frontiers together. One direction for future research is to apply the recent development in the two frontiers to study the dynamic interactions of return variance and variance risk premiums on a large cross section of stocks and stock indexes.

Acknowledgements

I thank the editors Nour Meddahi, Per Mykland, and Neil Shephard; two anonymous referees; and Yacine Aït-Sahalia, Turan Bali, Tim Bollerslev, Peter Carr, Robert Engle, Peter Hansen, Eric Renault, Albert Shiryaev, Ronnie Sircar, and participants of the 2005 workshop on Stochastic Modeling in Financial Mathematics in Montreal, and the 2005 Princeton–Chicago Conference on the Econometrics of High Frequency Financial Data for comments. All remaining errors are mine. I gratefully acknowledge financial support from Baruch College, the City University of New York.

References